Mostrar el registro sencillo del ítem

dc.contributor.authorRODAS M., ELKINspa
dc.date.accessioned2016-01-04 00:00:00
dc.date.accessioned2022-06-30T15:04:00Z
dc.date.available2016-01-04 00:00:00
dc.date.available2022-06-30T15:04:00Z
dc.date.issued2016-01-04
dc.identifier.urihttps://repositorio.unisucre.edu.co/handle/001/1195
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Sucrespa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.unisucre.edu.co/index.php/recia/article/view/202spa
dc.subjectBacterias hidrolíticasspa
dc.subjectenzimas extracelularesspa
dc.subjecttratamiento de aguas residuales de frigorífico.spa
dc.titleActividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigoríficospa
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.identifier.doi10.24188/recia.v8.n1.2016.202
dc.relation.referencesARNOSTI, C. 2011. Microbial Extracellular Enzymes and the Marine Carbon Cycle. Annual Reviews 3:401-425.spa
dc.relation.referencesBAZRAFSHAN, E.; MOSTAFAPOUR, F.K.; FARZADKIA, M.; OWNAGH, K.A.; MAHVI; A.H. 2012. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process. Plos One 7 (8):1-8.spa
dc.relation.referencesBEN-GIGIREY B, DE SOUSA J.M.V.B, VILLA T.G. (2000). Characterization of biogenic amine-producing Stenotrophomonas maltophilia strains isolated from white muscle of fresh and frozen albacore tuna. Int J Food Microbiol 57:19-31.spa
dc.relation.referencesCAVALEIRO, A.J.; SOUSA, D.Z.; ALVES, M.M. 2010. Methane production from oleate: assessing the bioaugmentation potential of Syntrophomonas zehnderi.water research 44 (17):4940-4947.spa
dc.relation.referencesÇADIRCI B.H.; ÇITAK S. 2005. A Comparison of Two Methods Used for Measuring Antagonistic Activity of Lactic Acid Bacteria. Pakistan Journal of Nutrition 4 (4): 237-241.spa
dc.relation.references?ATER, M.; FANEDL, L.; MALOVRH, S.; LOGAR, R.M. 2015. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Bioresource technology 186: 261-269.spa
dc.relation.referencesCHAN, Y.J.; CHONG, M.F.; LAW, C.L.; HASSELL, D.G. 2009. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal 155:1-18.spa
dc.relation.referencesCHEN, Q.; NI, J.; MA, T.; LIU, T.; ZHENG, M. 2015. Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresource technology 183:25-32.spa
dc.relation.referencesCUNHA, A.; ALMEIDA, A.; COELHO, F.J.R.C.; GOMES, N.C.M.; OLIVEIRA, V.; SANTOS, A.L. 2010. Bacterial extracellular enzymatic activity in globally changing aquatic ecosystems. Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz, Spain: Formatex Research Center: 124-135.spa
dc.relation.referencesFACCHIN, S.; ALVES, P. D.; DE FARIA SIQUEIRA, F.; BARROCA, T. M.; NETTO, J.M.; KALAPOTHAKIS, E. 2013. Biodiversity and secretion of enzymes with potential utility in wastewater treatment. Open Journal of Ecology 3 (1):34-47.spa
dc.relation.referencesGERARDI, M.H. 2003. The microbiology of anaerobic digesters. John Wiley & Sons. USA.spa
dc.relation.referencesHANKIN, L.; ANAGNOSTAKIS, S. L. 1975. The use of solid media for detection of enzymes production by fungi. Mycologia 67 (3): 597-607.spa
dc.relation.referencesHERRERO, M.; STUCKEY, D.C. 2014. Bioaugmentation and its application in wastewater treatment: A review. Chemosphere 1:10.spa
dc.relation.referencesHU, X.; LI, A.; FAN, J.; DENG, C.; ZHANG, Q. 2008. Biotreatment of q-nitrophenol and nitrobenzene in mixed wastewater through selective bioaugmentation. Bioresour. Technol. 99: 4529-4533.spa
dc.relation.referencesICHIDA, J.M.; KRIZOVA, L.; LEFEVRE, C.A.; KEENER, H.M.; ELWELL, D.L.; BURTT JR., E.H. 2001. Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. Journal of Microbiological Methods 47:199-208.spa
dc.relation.referencesLEALEM, F.; GASHE, B. A. 1994. Amylase production by a gram-positive bacterium isolated from fermenting tef (Eraglostis tef). J. Appl. Bacteriol. 77 (3): 348 352.spa
dc.relation.referencesLEFEBVRE, X.; PAUL, E.; MAURET, M. 1998. Kinetic characterization of saponified domestic lipid residues aerobic biodegradation. Water Research 32: 3031-3038.spa
dc.relation.referencesLIU, Y.; KANG, X., LI, X.L.; YUAN, Y. 2015. Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment. Bioresource technology 190:487-91spa
dc.relation.referencesMARONE, A.,;MASSINI, G.; PATRIARCA, C.; SIGNORINI, A.; VARRONE, C.; IZZO, G. 2012. Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities. international journal of hydrogen energy 37 (7):5612-5622.spa
dc.relation.referencesMARTIN-RYALS, A.; SCHIDEMAN, L.; LI, P.; WILKINSON, H.; WAGNER, R. 2015. Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms. Bioresource technology 189:62-70.spa
dc.relation.referencesMOHAN, S.V.; RAO, N.C.; PRASAD, K.K.; SARMA, P.N. 2005. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater. Process Biochemistry 40 (8):2849-2857.spa
dc.relation.referencesMUÑOZ, D.M. 2005. Sistema de tratamiento de aguas residuales de matadero: Para una población menor 2000 habitantes [System of residual water treatment of slaughter house: For a smaller population 2000 inhabitants. Facultad de Ciencias Agropecuarias 3 (1):87-98.spa
dc.relation.referencesPABÓN, S. L.; GÉLVEZ, J.H.S. 2009. Arranque y operación a escala real de un sistema de tratamiento de lodos activos para aguas residuales de matadero. Ingeniería e Investigación 29 (2):53-58.spa
dc.relation.referencesPALATSI, J.; VIÑAS, M.; GUIVERNAU, M.; FERNANDEZ, B.; FLOTATS, X . 2011. Anaerobic digestion of slaughterhouse waste: Main process limitations and microbial community interactions. Bioresource Technology 102:2219–2227.spa
dc.relation.referencesPARK, D.; LEE, D.S.; KIM, Y.M.; PARK, J.M. 2008. Bioaugmentation of cyanide-degrading microorganisms in a fullscale cokes wastewater treatment facility. Bioresour. Technol. 99:2092–2096.spa
dc.relation.referencesTEATHER, R. M.; WOOD, P. J. 1982. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43 (4):777-780.spa
dc.relation.referencesVAN DER GAST, C.J.; WHITELEY, A.S.; THOMPSON, I.P. 2004. Temporal dynamics and degradation activity of a bacterial inoculum for treating waste metal-working fluid. Environmental Microbiology 6:254–263.spa
dc.relation.referencesVAVILIN, A. .; FERNANDEZ, B.; PALATSI, J.; FLOTATS, X.. 2008. Hydrolysis kinetics in anaerobic degradation of particulate organic material Waste Manag. 28 (6):939–951spa
dc.relation.referencesVIDAL, G.; CARVALHO, A.; MÉNDEZ, R.; LEMA, J.M. 2000. Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresource Technology 74:231-239.spa
dc.relation.referencesYU, Z.T.; MOHN, W.W. 2002. Bioaugmentation with the resin-acid degrading bacteria Zoogloea resiniphila DhA-35 to counteract pH stress in an aerated lagoon treating pulp and paper mill effluent. Water Res. 36:2793–2801.spa
dc.identifier.eissn2027-4297
dc.identifier.urlhttps://doi.org/10.24188/recia.v8.n1.2016.202
dc.relation.bitstreamhttps://revistas.unisucre.edu.co/index.php/recia/article/download/202/243
dc.relation.citationeditionNúm. 1 , Año 2016 : RECIA 8(1):Enero-Juniospa
dc.relation.citationendpage43
dc.relation.citationissue1spa
dc.relation.citationstartpage37
dc.relation.citationvolume8spa
dc.relation.ispartofjournalRevista Colombiana de Ciencia Animal - RECIAspa
dc.title.translatedActividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigoríficoeng
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

FicherosTamañoFormatoVer
Rev Colombiana Cienc Anim. RECIA-202.pdf1.013Mbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-sa/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-sa/4.0/