Publicación:
Efecto De Diferentes Concentraciones De Fructosa Sobre La Producción De Celulosa Bacteriana En Cultivo Estático

dc.contributor.authorJaramillo, Rubenspa
dc.contributor.authorPerna, Olgaspa
dc.contributor.authorRevollo, Adrian Benitospa
dc.contributor.authorArrieta, Carlosspa
dc.contributor.authorEscamilla, Edgardospa
dc.date.accessioned2013-01-13 00:00:00
dc.date.accessioned2022-07-01T17:15:40Z
dc.date.available2013-01-13 00:00:00
dc.date.available2022-07-01T17:15:40Z
dc.date.issued2013-01-13
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24188/recia.v5.n1.2013.476
dc.identifier.eissn2027-4297
dc.identifier.urihttps://repositorio.unisucre.edu.co/handle/001/1469
dc.identifier.urlhttps://doi.org/10.24188/recia.v5.n1.2013.476
dc.language.isospaspa
dc.publisherUniversidad de Sucrespa
dc.relation.bitstreamhttps://revistas.unisucre.edu.co/index.php/recia/article/download/476/523
dc.relation.citationeditionNúm. 1 , Año 2013 : RECIA 5(1):ENERO-JUNIOspa
dc.relation.citationendpage130
dc.relation.citationissue1spa
dc.relation.citationstartpage116
dc.relation.citationvolume5spa
dc.relation.ispartofjournalRevista Colombiana de Ciencia Animal - RECIAspa
dc.relation.referencesBUDHIONO A.; ROSIDI B.; TAHER H.; IGUCHI M. 1999. Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Journal Carbohydrate Polymers. 40:137-143.spa
dc.relation.referencesCAICEDO, L., DE FRANCA, F., y col. 2003. Permeabilidad hidráulica e hinchamiento en membranas de celulosa bacteriana. Memorias, III Congreso Internacional de Biomateriales BIOMAT.spa
dc.relation.referencesCARREIRA, P.; MENDES, A.J.; TROVATTI, E. 2011. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource technology. 10 (2): 7354–7360.spa
dc.relation.referencesCARREÑO-PINEDA, L. 2011. Efecto de las Condiciones de Cultivo y Purificación sobre las Propiedades Fisicoquímicas y de Transporte en Membranas de Celulosa Bacteriana. Tesis presentada como requisito parcial para optar al título de Doctor en Ingeniería. Bogotá D.C., Colombia.spa
dc.relation.referencesCHAVEZ, P.J.;MARTINEZ, Y.S.; CONTRERAS M.L.;GOMEZ, S.;MEMBRILLO, H.J.; ESCAMILLA, M.J. 2005. Partial bioenergetic characterization of Gluconacetobacter xylinum cells released from cellulose pellicles by a novel methodology. Journal of Applied Microbiology . 99(5): 1130-1140.spa
dc.relation.referencesCHENG H.; WANG P.M; CHEN JW, WU W.T. 2002 Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnology and Applied Biochemistry. 35:125-132.spa
dc.relation.referencesCHUNG, YUNCHUNG; SHYU, YUANTAY. 1999. The effects of pH, salt, heating and freezing on the physical properties of bacterial cellulose-nata. International Journal of food science and technology. 34: 23-26.spa
dc.relation.referencesHEO M.S.; SON H.J. 2002. Development of an optimized, simple chemically defined medium for bacterial cellulose production by Acetobacter sp. A9 in shaking cultures. Biotechnology and Applied Biochemistry. 36 (Pt 1): 41-45.spa
dc.relation.referencesHUBER, G.W.; IBORRA, S.; CORMA, A. 2006. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews. 106: 4044–4098.spa
dc.relation.referencesISHIHARA, M.; MATSUNAGA, M.; HAYASHI, N.; TISLER, V. 2002. Utilization of D-xylose as carbon source for production of bacterial cellulose. Enzyme and Microbial Technology. 31: 986–991.spa
dc.relation.referencesJARAMILLO, L. R.; TOBIO, J.W.; ESCAMILLA M.J. 2012. Efecto de la sacarosa en la producción de celulosa por Gluconacetobacter xylinus en cultivo estático. Rev. MVZ Córdoba. 17(2): 3004-3013.spa
dc.relation.referencesKLEMM, D.; SCHUMANN, D.; UDHARDT, U.; MARSCH, S. 2001. Bacterial synthesized cellulose artificial blood vessels for microsurgery. Progress in Polymer Science. 26: 1561–1603.spa
dc.relation.referencesKRYSTYNOWICZ, A.; CZAJA, W.; WIKTOROWSKA, J.A.; GONÇALVES, M.M.; TURKIEWICZ ,M. BIELECKI, S. 2002. Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology. 29:189-195.spa
dc.relation.referencesMIKKELSEN, D.; FLANAGAN, B.M.; DYKES, G.A.; GIDLEY, M.J. 2009. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. Journal of Applied Microbiology.spa
dc.relation.referencesMOON, S.H.; PARK, J.M.; CHUN; H.Y.; KIM, S.J. 2006. Comparisons of physical properties of bacterial celluloses produced in different culture conditions using saccharified food wastes. Biotechnology and Bioprocess Engineering. 11: 21-31.andspa
dc.relation.referencesNGUYEN, V. 2007. Improved Yield and Application of Bacterial Cellulose Synthesized by Gluconacetobacter xylinus from Kombucha. Master's Thesis, School of Land, Crop and Food Sciences, University of Queensland.spa
dc.relation.referencesNGUYEN, V. T., FLANAGAN, B., GIDLEY, M. J., DYKES, G. A. 2008. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Current Microbiology, 57(5), 449–453.spa
dc.relation.referencesNORO, N.; SUNGANO, Y.; SHOJA, M. 2004. Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Applied Microbiology and Biotechnology. 64: 199-205spa
dc.relation.referencesPOURRAMEZAN, G.Z.; ROAYAEI A.M.; QEZELBASH,Q.R. 2009. Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2. Biotechnology. 8: 150-154.spa
dc.relation.referencesRUKA, R.; SIMON, G.; DEAN, K. 2012. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Journal Carbohydrate Polymers.spa
dc.relation.referencesSEONG, J. ; LEE, S.E.; YANG, H.; JIN, Y-H.; PARK, CH.; PARK, Y. 2010. Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Molecular and Cellular Toxicology. 6, 373–380 .spa
dc.relation.referencesSHEAD, O.; KHAN, S.; KHAN, T.; PARK, J. K. 2009. Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean Journal of Chemical Engineering. 26: 1689–1692.spa
dc.relation.referencesTAYLOR, KAAC. 1995. A Colorimetric Fructose Assay. Applied.Biochemistry and Biotechnology 53 (3): 215-227.spa
dc.relation.referencesWEIA, B.; YANGA, B.G.; HONG,F. 2011. Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Journal Carbohydrate Polymers.84: 533–538.spa
dc.relation.referencesWILLIANMS, SCOTT Y CANNON, ROBERT. 1989. Alternative environmental roles for cellulose produced by Acetobacter xylinum. Applied and Environmental Microbiology.55, 2448-2452.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.unisucre.edu.co/index.php/recia/article/view/476spa
dc.subjectbacterial celluloseeng
dc.subjectfructoseeng
dc.subjectGluconacetobacter xylinus IFOeng
dc.subjectstatic culture.eng
dc.subjectcelulosa bacterianaspa
dc.subjectfructosaspa
dc.subjectGluconacetobacter xylinus IFOspa
dc.subjectcultivo estático.spa
dc.titleEfecto De Diferentes Concentraciones De Fructosa Sobre La Producción De Celulosa Bacteriana En Cultivo Estáticospa
dc.title.translatedEffect Of Different Concentrations Of Fructose On Bacterial Cellulose Production In Static Cultureeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos