

Received 8 May 2000; revised 29 June 2000; accepted for publication 29 June 2000

Short Report

Presence of Lutzomyia evansi, a vector of American visceral leishmaniasis, in an urban area of the Colombian Caribbean coast

Eduar Elias Bejarano, Sandra Uribe, Winston Rojas and Ivan Darío Vélez *Programa de Estudio y Control de Enfermedades Tropicales – PECET, Universidad de Antioquia, Apartado Aereo 1226, Medellín, Colombia*

Keywords: leishmaniasis, visceral leishmaniasis, *Leishmania chagasi*, *Lutzomyia evansi*, Colombia

Introduction

American visceral leishmaniasis (AVL) is a potentially fatal disease of neotropical countries, chiefly affecting children aged under 5 years, caused by *Leishmania* (Leishmania) *chagasi* Chagas & Chagas, which is indistinguishable from the ‘Old World’ parasite *Le. (Le.) infantum* Nicolle, of which it may be a synonym. AVL is transmitted to human or other mammalian hosts by the bites of the phlebotomine sandflies *Lutzomyia* (*Lutzomyia*) *longipalpis* (Lutz & Neiva) or *Lutzomyia* (*Lutzomyia*) *evansi* (Nuñez-Tovar) (GRIMALDI et al., 1989; TRAVI et al., 1996). Although *L. longipalpis* is the most widespread and important vector of AVL, *L. evansi* has been confirmed as a primary vector in rural areas of the Caribbean coast of Colombia and in some areas of Venezuela (AGUILAR et al., 1995; MONTOYA, 1996; PELLICIANELI et al., 1996). While conducting entomological studies in the urban area of Sincelejo and in some areas of Venezuela (AGUILAR et al., 1995; MONTOYA, 1996; PELLICIANELI et al., 1996), we found adults of *L. evansi* in dwellings and in peridomestic environments. This is the first record of *L. evansi* from an urban area in Colombia.

Methods

Sandflies were collected between 18:00 and 21:00 with Shannon traps and CDC light traps in houses and outdoors within 8 m of houses. An active daytime search of outdoor resting sites and house walls was also made. Of 270 sandflies collected, 226 (83.7%) were *L. evansi*; other species were *L. (Psychodopygus) panamensis* (Shannon), 8%; *L. (Lu.) gomezi* (Nitzulescu), 6.6% and *L. (Lu.) longipalpis* (Nunez & Abonnenc), 1.7%. Most *L. evansi* were observed either resting on house walls or biting humans, indicating an intradomiciliary habit and human–vector contact in this urban area of the city.

Discussion

The presence of *L. evansi* in dwellings may indicate incipient urban transmission of AVL in the city of Sincelejo, since VÉLEZ et al. (1995), in a rural focus of AVL in northern Colombia (San Andrés de Sotavento), found that the greatest risk of transmission was in areas where *Lu. evansi* entered houses, indicating that AVL was associated with intradomiciliary activity of *Lu. evansi*. Although *Lu. evansi* was earlier found in rural locations of the Colombian Caribbean coast (LE PAPE, 1991), it is not clear how or why this species has now become so widely dispersed. Investigations 7 and 10 years before the present study (I. D. Vélez, unpublished observations, 1990; MONTOYA, 1996) failed to reveal *Lu. evansi* in Sincelejo and we therefore hypothesise that, among other factors, its presence there now may be due to recent invasion of the periurban area, in association with humans and domestic animals, rather than to the survival of an indigenous population. However, it is possible that a pre-existing low-level undetected population of *Lu. evansi* could have survived the earlier antinatural insecticide house-spray control campaign and then proliferated.

Although once associated only with rural areas, the AVL vectors (*Lu. longipalpis* and *Lu. evansi*) now appear to be associated also with urban and suburban areas of Latin America. Urban AVL has been reported from both Brazil and Venezuela, and the appearance and spread of AVL in the major cities of the region has become an emerging public health problem in recent years (JERONIMO et al., 1994; ARIAS et al., 1996; AGUILAR et al., 1998). At the moment, AVL is unknown in Sincelejo, but the presence thereof of a known vector suggests a real risk of an urban outbreak. Given the high incidence of AVL on the Costa Rican Caribbean coast and the concomitant high rate (20–26%) of canine infection (LE PAPE, 1991; VÉLEZ et al., 1995), a few infected local rural migrants (or their dogs) could introduce the disease into the city of Sincelejo at any time. City health authorities need to be aware of this risk and to prepare for a future urban outbreak, such as occurred in Bucaramanga (SANDOVAL et al., 1998).

An understanding of the interactions between urban environmental changes and vector phlebotomines in new human-made environments is a prerequisite for the design of appropriate disease prevention and control strategies, in which the role of dogs as potential reservoirs of infection must also be considered, in addition to that of foxes and synanthropic opossums (*Didelphis* spp.) (COSTA et al., 1999).

Acknowledgements

This study was supported by Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología Francisco José de Caldas (COLCIENCIAS), grant no. 1115-05-106-97.

References

Announcement

ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE
Garnham Fellowships

Professor Cyril Garnham was one of the UK's leading parasitologists in the 20th century and his work was characterized by outstanding achievement as both laboratory scientist and field worker in the tropics. The special place that Garnham occupies among his colleagues is recognized by the Fund set up in his memory to establish research fellowships for young scientists.

The aim of the Garnham Fellowship is to encourage young scientists to carry out short-term field projects. Suitable applicants are invited to apply to the Fund, which is administered by the Royal Society of Tropical Medicine and Hygiene.

There are no restrictions by nationality or age, and fellowship of the Royal Society of Tropical Medicine and Hygiene is not a requirement. Applications from non-Fellows should be supported by a Fellow who can attest to the value of the project and to the competence of the applicant to carry out the work.

- One Garnham Fellowship of up to £2000 will be awarded annually.
- The Garnham Fellowship is to be used for short-term field projects of up to 2 years' duration.
- Preference will be given to topics in parasitology or medical entomology and to applicants with less than 5 years' postdoctoral experience.
- Applicants are required to submit a detailed project, with costing of the work proposed, and a supporting statement from their head of department or supervisor, at least 6 months before the date of commencement.
- A short report should be submitted within 3 months of completion of the study.

Application forms may be obtained from the Administrator, Royal Society of Tropical Medicine and Hygiene, Manson House, 26 Portland Place, London, W1B 1EY, UK; fax +44 (0)20 7436 1389, e-mail mail@rsnmh.org. The closing date for receipt of applications is 15 September annually.