EFECTO DE LA DENSIDAD DE SIEMBRA SOBRE LOS
PARAMETROS DE PRODUCCIÓN FORRAJERA Y EL VALOR
NUTRITIVO DE LA VARIEDAD DE YUCA VENEZOLANA
(*Manihot esculenta* Cranz.) EN EL MUNICIPIO DE SAHAGÚN-
CORDOBA.

YACERNEY PATERNINA PATERNINA

DIRECTOR:
RENE PATÍÑO
Zootecnista M Sc.

CO-DIRECTOR:
SERGIO MEJIA K.
Ingeniero Agrónomo M. Sc.

Propuesta de Trabajo de Grado para Optar al Título de
Zootecnista

UNIVERSIDAD DE SUCRE
FACULTAD DE CIENCIAS AGROPECUARIAS
DEPARTAMENTO DE ZOOTECNIA
SINCELEJO
2006
EFECTO DE LA DENSIDAD DE SIEMBRA SOBRE LOS PARAMETROS DE PRODUCCIÓN FORRAJERA Y EL VALOR NUTRITIVO DE LA VARIEDAD DE YUCA VENEZOLANA (*Manihot esculenta* Cranz.) EN EL MUNICIPIO DE SAHAGÚN-CORDOBA.

YACERNEY PATERNINA PATERNINA

UNIVERSIDAD DE SUCRE
FACULTAD DE CIENCIAS AGROPECUARIAS
DEPARTAMENTO DE ZOOTECNIA
SINCELEJO
2006
“Únicamente los autores son responsables de las ideas expuestas en el presente trabajo“
Nota de aceptación:

Presidente del Jurado

Jurado

Jurado

Sincelejo, 2006.
AGRADECIMIENTOS

Agradezco a RENE PATIÑO, Director y SERGIO MEJIA Coodirector del trabajo de grado, quienes, con no sólo su apoyo intelectual, sino con su paciencia, dedicación, y comprensión fueron siempre una fuente de ánimo para seguir adelante a pesar de los obstáculos.

Agradezco al señor MAURICIO SIMONS por haber permitido la realización de este estudio en la Finca Altamonte Sahagún -Córdoba.

Agradezco al señor ANTONIO TOVAR ORTEGA, por su colaboración y amistad durante la realización de este trabajo.

A la Universidad de Sucre especialmente a la Facultad Ciencias Agropecuarias, por haberme permitido profesionalizarme.

A todas aquellas personas, que hicieron posible de una u otra forma, la culminación de éste trabajo y contribuyeron a nuestra realización profesional e intelectual.
DEDICATORIA

Este trabajo lo dedico de manera muy especial a mi Dios todo poderoso, por haberme permitido realizar mis sueños, por darme la sabiduría, paciencia y no dejarme desvanecer en los momentos adversos, ya que siempre estuvo presente.

A mi madre ENITH, por su apoyo incondicional, sacrificio, que llevó a hacer realidad este sueño.

A mi padre EDILBERTO, por su enseñanza y apoyo en la realización de este trabajo.

A mis hermanos GESUGEY, MARIO Y LUIS DAVID, por su apoyo incondicional en todas mis labores que contribuyeron a mi formación académica.

A mi novia VIVIANA, por su amor, cariño y su colaboración en los momentos más difíciles de mi vida.

A mi amiga ALBA K. MORALES, por su apoyo y amistad incondicional y colaboración en el desarrollo del trabajo de grado.
CONTENIDO

RESUMEN 17
INTRODUCCIÓN 19
OBJETIVOS 19
OBJETIVO GENERAL 19
OBJETIVOS ESPECÍFICOS 19
1. ESTADO DEL ARTE 20
1.1 CARACTERÍSTICAS GENERALES DE LA ESPECIE 20
1.1.1 Clasificación Taxonómica 20
1.1.2 Nombres Comunes 20
1.2 DISTRIBUCIÓN Y CARACTERÍSTICAS MORFOLÓGICAS 21
1.3 CARACTERÍSTICA DE LA VARIEDAD VENEZOLANA
(Mcol 2215) 21
1.4 ASPECTOS FISIOLOGICOS DEL CRECIMIENTO Y DESARROLLO
DE LA PLANTA 22
1.5 USO EN LA ALIMENTACIÓN HUMANA 23
1.6 USO EN LA ALIMENTACIÓN ANIMAL 24
1.7 FACTORES ANTINUTRICIONAL 25
1.8 CONSUMO EN VACUNOS 26
1.9 CALIDAD NUTRICIONAL 26
1.10 SISTEMAS DE SIEMBRA Y PRODUCCIÓN DE BIOMASA 28
1.11 PROPAGACIÓN Y CALIDAD DE SEMILLA 29
1.12 ENFERMEDADES Y PLAGAS 30
1.13 SUELO Y FERTILIZACIÓN 31
1.14 ADAPTACIÓN A FACTORES BIÓTICOS Y ABIÓTICOS 32
LISTA DE CUADROS

Cuadro 1. Consumo voluntario, digestibilidad y valor nutritivo del heno de follaje de yuca como única componente de la dieta de novillos Holstein 26

Cuadro 2. Composición de la parte área de la yuca cosechada para forraje a los 90 días 27

Cuadro 3. Medias de las diferentes variables en estudio para edad de corte y densidad de siembra en la época seca de la variedad venezolana (Mcol 2215) en el municipio de Sahagún – Córdoba 40

Cuadro 4. Medias de las diferentes variables en estudio para edad de corte y densidad de siembra en la época seca de la variedad venezolana (Mcol 2215) en el municipio de Sahagún – Córdoba 53

Cuadro 5. Medias de las diferentes variables en estudio para edad de corte y densidad de siembra en la época de lluvia de la variedad venezolana (Mcol 2215) en el municipio de Sahagún – Córdoba 53

Cuadro 6. Análisis de calidad y producción de materia seca de la yuca Venezolana (Mcol2215) en dos épocas del año 56

Cuadro 7. Costo de producción del cultivo de yuca de la variedad Venezolana (Mcol 2215) bajo el efecto de tres densidades de siembra
LISTA DE FIGURAS

Figura 1. Producción de materia seca (Kg./ha) por época del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra 42

Figura 2. Producción de materia seca (kg/ha) por época del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra en tres edades de corte 43

Figura 3. Producción de materia seca (Kg./ha) por época del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra 44

Figura 4. Porcentaje de materia seca por época del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra 45

Figura 5. Porcentaje de materia seca por época en el cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra en tres edades de corte 46

Figura 6. Producción de forraje fresco (kg/ha) por época del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra 47

Figura 7. Producción de forraje fresco (Kg./ha) por época del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra 48

Figura 8. Efecto de la precipitación sobre el rendimiento de forraje fresco en las dos épocas del año en Sahagún – Córdoba – Colombia. Variedad venezolana (Mcol 2215) 49
Figura 9. Altura de la planta por época del cultivo de la variedad Venezolana (Mcol 2215) bajo tres densidades de siembra

Figura 10. La proporción de hoja de la planta por época en base seca del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra

Figura 11. Proporción del tallo en base seca por época del cultivo de la Variedad venezolana (Mcol 2215) bajo tres densidades de siembra y tres edades de corte

Figura 12. Precipitación: Pluviosidad mensual

Figura 13. Temperatura mensual
LISTA DE ANEXOS

Anexo A. Plano de ensayo 71
Anexo B. Ubicación del ensayo (Mapa del municipio de Sahagún) 72
Anexo C. Análisis físico-químico del suelo en el municipio de Sahagún Córdoba 73
Anexo D. Costo de producción del cultivo de yuca de la variedad venezolana (Mcol 2215) bajo el efecto de tres densidades de siembra, en el municipio de Sahagún Córdoba 74
Anexo E. Resultados bromatológicos realizados en el laboratorio de Turipaná 77
Anexo F. Análisis de varianza de las variables 78
Anexo G. Evidencias fotográficas 82
RESUMEN

Se evaluaron tres densidades de siembra sobre los parámetros de producción forrajera y valor nutritivo de la variedad de yuca venezolana Mcol 2215 (*Manihot esculenta* Crantz) en dos épocas del año y tres edades de corte. Estudio realizado en la finca Altamonte propiedad de Mauricio Simons, ubicada en el municipio de Sahagún –Córdoba. Entre los 9° 2 latitud norte y 75° 37' de longitud oeste. Las variables evaluadas fueron producción de materia seca, valor nutricional, participación porcentual de la parte aérea de la planta, altura de la planta y la relación beneficio-costo, de las densidades de siembra. Los tratamientos correspondieron a tres distancias de población (0.33m*0.70m) 42.840 plantas /ha; (0.20m*0.70m) 71.400 plantas/ha; (0.14m*0.70m) 99.960 plantas /ha, con tres edades de corte (80, 90 y 100 días) y dos épocas (sequía – lluvia), con un diseño experimental completamente aleatorio con tres repeticiones en un arreglo factorial de 2 x 3 x 3 para un total de 18 tratamientos. Se tomaron 4 surcos de cada parcela de (10m*3.33m) como muestra representativa. El forraje cosechado se obtuvo a los 80, 90 y 100 días después de la siembra, también se le realizó un análisis bromatológico del material producido a los 90 días de corte en la dos épocas del año.

El factor densidad de siembra no afectó (P>0,05) ninguna de las variables evaluadas, caso contrario ocurrió con la época del año, presentándose diferencia altamente significativa (P<0,01). Para la variable altura en época seca se registraron valores promedios de 37,9 cm y en la de lluvia 89 cm. La variable de producción de forraje fresco registró un promedio de 2.140,4 kg/ha en la época seca y de 8.840,3 kg/ha en la época de lluvia. En relación
a la materia seca se obtuvo 637,7 kg/ha para época seca y de 2.139,3 kg/ha en la de lluvia. En cuanto a las proporciones de la parte área de la planta, la porción de la hoja registró un valor promedio en época seca de 52,99% y en la de lluvia 40,6%, para la proporción de tallo hubo interacción de la época por edad, y el resto de las proporciones de la planta no registraron diferencia altamente significativa (P>0.05). Para la edad se presentaron diferencias altamente significativas (P<0,01) en variables como materia seca, con valores de 1.612,65 kg/ha a 80 días, 1.618,63 kg/ha a los 90 días y 1.180,98 kg/ha a los 100 días. En la composición nutricional a los 90 días el porcentaje de proteína cruda fue de 20,2%; FDN 57,9%; FDA 47%, ceniza 5,8%, materia orgánica 94,2% durante la época seca y en la época de lluvia: proteína cruda 17,5%; FDN 41,7%; FDA 35,4%; cenizas 5,4% y materia orgánica 94,6%. De las densidades de siembra que representa menor costo es la de 42,840 plantas/hectárea, con un costo de $1.433.500. Se concluye que la densidad de siembra en estas condiciones de evaluación no afectó la producción de forraje, pero si la afectó la época del año y la edad de corte, y que al momento de escoger la densidad de siembra se debe escoger la de menor costo de producción.
ABSTRACT

Evaluated three densities of sowing on the production parameters, and nutritious value of the variety of cassava Venezuelan Mcol 2215 (Manihot esculenta Cranzt); in two epoch of the year and three ages of cut. Study realized in the Altamonte property of Mauricio Simons, located in the municipality of Sahagún – Cordoba entre the 9° 2 of latitud norte and 75° 37' longitud oeste. The evaluated variable were production of dry matter, nutricional value, percentage participation of the aerial part of the plant, height of the plant and the relation benefit-cost, of the densities of sowing. The treatments corresponded to three distances of population (0.33m*0.70m) 42.840 plant/ha; (0.20m*0.70m) 71.400 plant/ha; (0.14m*0.70m) 99.960 plant/ha with three ages of cut (80, 90 and 100 days) and two epoch (drought - rain), with completely random an experimental design with three repetitions in a factorial adjustment of 2 x 3 x 3 for a total of 18 treatments. 4 furrows were taken from each parcel of (10m*3.33m) as representative sample. The harvested forage was obtained to the 80, 90 and 100 days after seedtime, also a bromatológico analysis of the material produced to the 90 days of cut was realizated to him in the two epoch of the year. The factor density of sowing did not affect (P>0.05) any of the evaluated variable, opposite case happened in the epoch of the year, appearing significant altatment differences (P<0.01). For the variable height at dry epoch averages of 37.9 cm and in the one of rain were registered values 89 cm. The unstable of fresh forage production registered an average of 2.140.4 kg/ha at the dry time and of 8.840.3 kg/ha at the time of rain. In relation to the dry matter kg/ha for dry time and of 2.139.3 was obtained 637.7 kg/ha in the one of rain. As far as the proportions of the part area of the plant, the portion of the leaf registered a value average at dry epoch of 52.99% and the one of rain 40.6%, for
proportions stalk registered interaction of epoch y ages, for the rest of the proportions of the plant did not register significant difference (P>0.05). For the age significant differences altament (P<0.01) in variables like dry matter appeared, with 1.612,65 values of kg/ha to 80 days, 1.618,63 kg/ha to 90 days and 1.180,98 kg/ha to the 100 days. In the nutricional composition to the 90 days the percentage of crude protein was of 20,2%; FDN 57,9%; FDA 47%, ash 5.8%, organic matter 94.2% during the dry time and at the time of rain: crude protein 17,5%; FDN 41,7%; FDA 35,4%; ashes 5.4% and organic matter 94,6%. Of the densities of sowing that represents minor cost is the one of 42.840 plantas/hectare, with a cost of $1.637.840. One concludes that the density of sowing in these conditions of evaluation did not affect the forage production, but if it affected the time of the year and the age of cut, and that at the time of choosing the density of sowing is due to choose the one of smaller production cost.
INTRODUCCIÓN

Los sistemas ganaderos en Colombia y particularmente en las zonas de sabanas de Córdoba, han sido por mucho tiempo explotaciones de gran importancia económica, social y cultural, proporcionando a muchas regiones del país de productos como leche y carne bovina, fuentes de alimentación de la población urbana y rural. La sabana es considerada por excelencia una región ganadera y con alta e importante producción bovina, es así que el municipio de Sahagún (Córdoba) cuenta con 71.597,75 hectáreas en pasturas y 18.544,87 hectáreas en agricultura, con 285.323 cabezas de ganado vacuno (UMATA, 2000). Que no han sido suficientes para proporcionar el alimento necesario y sostener una producción sostenible debido a factores determinantes como la estacionalidad (época de lluvia y de sequía), lo que ha ocasionando pérdidas económicas para los productores.

Tradicionalmente, se observa que las pasturas en las épocas secas sufren severamente por las pocas o nulas lluvias, que dificultan la extracción de nutrientes del suelo, influyendo negativamente en la productividad de la pastura, reflejándose en la baja concentración de proteína y energía, que ocasionan en los animales pérdida de peso y merma en la producción de leche y carne.

Para contrarrestar este problema de déficit forrajero durante la época seca, se ha contemplado la utilización del cultivo de la yuca (Manihot esculenta Crantz), como alternativa en la alimentación de animales. Esta se caracteriza por ser una especie con sistema radical formado por raíces profundas, condicionada para almacenar reservas y resistir en épocas adversas (sequía), como también producir en suelos pobres y con pocos insumos; lo que le confiere un buen potencial como alimento para bovinos. Además,
posee una abundante producción de forraje y raíces, con niveles de proteína cruda entre 20 y 35% y 18 a 20% de fibra bruta en el follaje (hojas + tallos tiernos); en la raíz, la proteína cruda es de 2 – 4 %, con 1.2 – 2.8% de fibra bruta (Buitrago, 1997). Este forraje puede ser aprovechado en diferentes formas: fresco, ensilado, henificado y en harina como fuente alimenticia en los hatos ganaderos.

Para lograr los mejores beneficios de la planta y optimizar la producción de forraje de yuca, hay que tener en cuenta el manejo de la densidad de siembra y la escogencia de la época y la edad de corte que tenga mejor producción en la zona. El presente estudio permitió evaluar el efecto de tres densidades de siembra sobre los parámetros de producción forrajera y valor nutritivo de la variedad de yuca venezolana (Mcol 2215) en el municipio de Sahagún (Córdoba), para así contribuir con el mejoramiento de las técnicas de producción y a la vez obtener mejor beneficio tanto para la alimentación animal como la calidad de vida humana.
OBJETIVOS

OBJETIVO GENERAL

Estar el efecto de tres densidades de siembra sobre los parámetros de producción forrajera y valor nutritivo de la variedad de yuca (*Manihot esculenta* Crantz) venezolana en dos épocas del año y tres edades de corte, en la finca Altamonte del municipio de Sahagún - Córdoba.

OBJETIVOS ESPECÍFICOS

- Determinar la producción de biomasa forrajera (kg. MS/ha) de la variedad de yuca venezolana (Mcol 2215) bajo tres densidades de siembra, dos épocas del año y tres edades de corte.
- Cuantificar los porcentajes de: materia seca (MS), proteína cruda (PC), cenizas(C), materia orgánica (MO), fibra detergente neutro (FDN) y fibra detergente ácida (FDA) de la variedad de yuca venezolana (Mcol 2215) bajo tres densidades de siembra, dos épocas del año y tres edades de corte.
- Establecer la participación porcentual en base seca de cada uno de los componentes de la biomasa área de la planta (hojas, tallos y pecíolos) de la variedad de yuca venezolana (Mcol 2215) bajo tres densidades de siembra, dos épocas del año y tres edades de corte.
- Calcular la altura (cm) de la variedad de yuca venezolana (Mcol 2215), bajo tres densidades de siembra, dos épocas del año y tres edades de corte.
- Estimar la relación costo beneficio para cada uno de los sistemas de siembra, de la variedad de yuca venezolana (Mcol 2215) bajo tres densidades de siembra, dos épocas del año y tres edades de corte.
1. ESTADO DEL ARTE

1.1 CARACTERÍSTICAS GENERALES DE LA ESPECIE

La yuca es un cultivo originario de América, mas exactamente de la zona del Brasil y que para la época temprana de la conquista Española, era un elemento esencial en la población indígena de la cuenca del Amazona y la Orinoquía y muchas llanuras bajas del Sur y Centro de América, de América la yuca llega al África y al Asia convirtiéndose en un renglón importante en las actividades agropecuarias para estos continentes (Ministerio de agricultura y desarrollo rural, 1996).

1.1.1 Clasificación taxonómica
Reino: vegetal
Clase: dicotiledónea
Subclase: archichalamydeae
Orden: euphorbiales
Familia: euporbiaceae
Tribu: manihoteae
Género: Manihot
Especie: esculenta Cranz.
Subespecies: carthagenensis, utilísima. (Montalvo, 1985)

1.1.2 Nombres comunes
Yuca (Norte de Sur América, América Central y las Antillas)
Mandioca (Argentina, Brasil, Uruguay y Paraguay)
Guacamote (México)
Cassava (en otros países). (Ministerio de agricultura y desarrollo rural, 1996)
1.2 DISTRIBUCIÓN Y CARACTERÍSTICAS MORFOLÓGICAS

Distribuida naturalmente desde el hemisferio occidental entre el sur de los Estados Unidos y Argentina, zonas como parte central, noroeste y occidente de Brasil y sur-occidente de México y Bolivia (Cock, 1989). También se haya distribuida en regiones como subsahara de África, Nueva Zelanda y Asia, siendo fuente de carbohidratos de gran importancia para estas poblaciones.

La yuca se caracteriza por ser un arbusto de crecimiento perenne y consistencia leñosa, tiene un tamaño y forma variable de acuerdo al tipo de ramificación, en la mayoría de las plantas propagadas vegetativamente, el tronco se divide a cierta altura en dos o tres ramas que a su vez se divide en otras ramas, dando a la copa forma redondeada, alcanzando alturas de planta de 1.5 - 2.5 metros. Las hojas son simples, constan de una lámina foliar y pecíolo de forma palmeadas y lobuladas, según la variedad, las hojas completamente desarrolladas son de diferentes colores (morado, verde y verde claro) y según las condiciones ecológicas (Cock, 1989). El fruto es de tipo trilocular; al hacer un corte transversal en el fruto se observa una serie de tejidos bien diferenciados; epicarpio, mesocarpio y endocarpio. Otros autores describen el fruto como una cápsula dehiscente y trilocular de forma ovoide, es pequeño y con aristas. La semilla es de forma ovoide-elipsoidal y mide aproximadamente 10 mm de largo, 6 mm de ancho y 4 mm de espesor, la testa es lisa de color café con moteado, en las plantas provenientes de material vegetativo las raíces son adventicias y se forman en la base inferior cicatrizada de la estaca y a partir de las yemas del tallo que están bajo tierra.

1.3 CARACTERÍSTICA DE LA VARIEDAD VENEZOLANA (Mcol 2215)

En entrevista con el ingeniero agrónomo Pacheco, J (2003, comunicación personal), de la fundación santa Isabel, egresado de la universidad de
Córdoba, reseña que la variedad venezolana (Mcol 2215) es una planta de porte intermedio a alto, alcanzando una altura de 2,5 m, tallo de color rojizo, produce en promedio dos tallos con ramificaciones y con entrenudos medianos y nudos poco prominentes, el color de la corteza es verde claro y la epidermis rojo en la parte interna y rojizo en la parte externa. Las hojas son de color verde a morado en hojas jóvenes, con pubescencias densas. El lóbulo central es de forma lanceolada, peciolo medianos de color rojo intenso con manchas verdes-amarillento. Las hojas y peciolo del cogollo son de color verde-morado claro. En el tercio superior de la planta las estipulas son bilobuladas de tamaño intermedio.

Raíces de color café oscuro en la epidermis, con corteza ligeramente morada y pulpa blanca; forma cónica cilíndrica, con tamaño intermedio y pedúnculo corto. Esta variedad venezolana en raíces frescas llega a producciones de 16,7 a 33,5 ton/ha, en materia seca de 6 a 12,5 ton/ha y en follaje fresco de 13 a 19,2 ton/ha en cultivos de cosecha de raíces con densidades de 10.000 plantas /ha teniendo en cuenta que en la que se realizaron los ensayos fueron departamento de Córdoba, Sucre, Atlántico y Uraba antioqueño (Corpoica, 1996).

1.4 ASPECTOS FISIOLOGICOS DEL CRECIMIENTO Y DESARROLLO DE LA PLANTA

Según Cock (1989), la estaca sembrada presenta en la primera y segunda semana gran perdida de agua por transpiración durante la semana siguiente se inicia el crecimiento de raíces fibrosas.

López (1976), citado por Cock (1989), afirma que todas las raíces fibrosas empiezan a almacenar almidón desde los 32-38 días después de la siembra, el almidón se deposita en el parénquima del xilema. Durante la fase de
brotación, los retoños y las raíces se forman a partir de las reservas existentes en la estaca. Luego de un mes la hoja produce carbohidratos necesarios para el crecimiento. Las primeras hojas formadas son pequeñas y con pocos lóbulos. Los carbohidratos producidos inicialmente se utilizan para la producción de follaje. Después de tres a cuatro meses la planta comienza a formar raíces engrosadas. En algunas de las variedades mas vigorosas se retarda la etapa de crecimiento aéreo, lo cual aumenta radicalmente la disponibilidad de carbohidratos para la expansión de raíces durante esta etapa del crecimiento, disminuye tanto el tamaño de las hojas como la tasa de formación de las hojas por ápice. Además las hojas caen y el área foliar tiende a disminuir. Las raíces se engrosan durante este periodo, pero el número de raíces no cambia.

1.5 USO EN LA ALIMENTACIÓN HUMANA

La yuca se utiliza en la alimentación humana mediante el cocimiento de las raíces o mediante su procesamiento para la elaboración de harinas (foriña o mañoco), casabes o almidones de uso alimenticio. Esta parte de la planta es de fuente energética pero baja en proteínas, sin embargo, las hojas son fuente de proteína (Ministerio de agricultura y desarrollo rural, 1996).

También se emplea cada vez mas en la obtención de almidón, glucosa líquida, alcohol y diversos productos fermentados, particularmente en América Central y Sur América alrededor del 40% de la producción de yuca es destinado al consumo humano (Muskus et al, 1997).

Por otra parte los beneficios de la hoja han sido estudiados antropológicamente hace 30 años en el estado Ceará al Norte de Brasil y Nueva Zelanda; observándose en los aborígenes de esta regiones que incluían las hojas de Manihot en su alimentación, que no adolecian de ningún
tipo de cáncer en las mamas, útero, ovarios, estomago, ni otras afecciones como diabetes, hipertensión, trastornos cardiovasculares, obesidad o trastornos gastrointestinales. Sin embargo, si se pudo identificar enfermedades entre los residentes extranjeros de las ciudades de esta zona debido a que no incluían en la alimentación el consumo de estas hojas; además estos aborígenes llegaban a una edad avanzada. (Linares, 2001).

1.6 USO EN LA ALIMENTACIÓN ANIMAL

La raíz de la planta de yuca ha sido una de las principales materias primas utilizadas para la fabricación de concentrados en la alimentación de animales no rumiantes; cerdos y aves (Huertas, 1996); pero en la actualidad la utilización también reside en el uso del follaje como suplemento alimenticio y algunos derivados como la harina de follaje de yuca utilizada para alimentar vacas lecheras, la que ha demostrado tener un valor nutricional casi igual al de la alfalfa (Echandi, 1962), citado por Domínguez (1979).

De acuerdo con los datos del NRC (National Research Council) la yuca aporta el 85% de la energía para rumiantes traduciéndose esto en ganancias de peso ligeramente superiores de los animales alimentados por yuca con relación al sorgo (Manual de ganadero actual, 2003).

Combinaciones de 75-25% y 50-50% de pasto elefante y forraje de yuca fresca (planta entera), mostraron mejores resultados en novillos de engorde, que cuando se usaba solamente pasto elefante (Moore, 1976).

En trabajos reportado en vacas lecheras alimentadas con concentrado en base a un 35% la harina de hoja y tallos de yuca han dado buenos resultados en la producción de leche (Preston et al. 1999).
1.7 FACTORES ANTINUTRICIONALES

La yuca al igual que otros alimentos no se escapa a la presencia de algún factor antinutricional siendo de particular importancia el contenido de niveles de glucósidos cianogénicos en el follaje que depende de la variedad, al igual que en las raíces la concentración de glucósido y de la enzima linamarasa varían en las diferentes partes de la planta. La deshidratación del follaje picado por acción del sol es un mecanismo efectivo para disminuir el contenido de ácido cianhidrico como sucede en las raíces frescas, cuando la deshidratación va acompañada de temperaturas altas la enzima se inactiva lo cual conduce una disminución en la hidrólisis de los glucósidos cianogénicos que liberan el ácido cianhidrico, este ácido normalmente es detoxificado en el cuerpo formando tiocinato que puede hallarse en la sangre y en la orina (Manual de ganadería actual, 2003).

Sin embargo, el fitomejoramiento ha generado variedades de yuca dulce, de alto rendimiento y bajos niveles de ácido cianhidrico (<0.01%), y variedades amargas con altos niveles de ácidos cianhidricos (0.02-0.03%) que son más propicias para la agroindustria por su alta producción de raíz y follaje (Huertas, 1996).

Diversos estudios se han realizado para evaluar el efecto del procesamiento de las hojas en la concentración de ácido cianhidrico en el producto final, y parece que a partir de la 6 semana de ensilada, el nivel de esta sustancia disminuye a un nivel que no es tóxico para los animales monogástricos (<100 ppm) que son sensibles a este compuesto, caso contrario sucede en rumiantes por el proceso de digestión fermentativa en el rumen que neutraliza el ácido cianhidrico (Preston et al. 1999).
1.8 CONSUMO EN VACUNOS

Wanapat *et al.* (1997), citado por Preston *et al.* (1999) implementó el uso del follaje de yuca de forma henificada como método para procesar el follaje, el cual ha sido utilizado como suplemento de vacas lecheras, tomando una gran importancia en la producción animal. En el Cuadro 1, se pueden observar los resultados obtenidos trabajando con novillos de la raza Holstein.

Cuadro 1. Consumo voluntario, digestibilidad y valor nutritivo del heno de follaje de yuca como única componente de la dieta de novillos Holstein.

<table>
<thead>
<tr>
<th></th>
<th>% BASE SECA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digestibilidad de la materia seca, %</td>
<td>71</td>
</tr>
<tr>
<td>Consumo, kg/100kg peso vivo</td>
<td>3.2</td>
</tr>
<tr>
<td>Proteína</td>
<td>25</td>
</tr>
<tr>
<td>FDN</td>
<td>34</td>
</tr>
<tr>
<td>FDA</td>
<td>27</td>
</tr>
</tbody>
</table>

1.9 CALIDAD NUTRICIONAL

Se pueden obtener dos productos del cultivo de la yuca de mucho valor nutritivo, como es la raíz y follaje de la planta, que tiene una composición proximal promedio que corresponde a 77% de agua; 8.2% de proteína cruda; 3.3% de carbohidratos solubles; 1.2% de grasa y 7.2% de fibra cruda (Montalvo, 1985). Teniendo en cuenta la parte de la planta que se aproveche, su composición química variará considerablemente; si solamente se utilizaran las hojas, el contenido de proteínas sería del orden de 23-28% en base seca, pero si se incluyen los peciólos y las ramas verdes apicales el contenido se reduciría a 18-21% de proteínas; una relación inversa se
apreciaría en el contenido de fibra que suele ser de alrededor de 9% para hojas solas, pero que aumenta a 20-25% cuando se incorpora toda la parte verde superior de la planta (Cock, 1989).

Moore (1976) y Meyreles et al. (1977), citados por Preston et al. (1999), determinaron la composición proteica que tiene la parte área de la planta de yuca cosechada para forraje a los 90 días (Cuadro 2).

Cuadro 2. Composición de la parte área de la yuca cosechada para forraje a los 90 días.

<table>
<thead>
<tr>
<th>Proporción Base Seca (%)</th>
<th>HOJA</th>
<th>PECIOLO</th>
<th>TALLO</th>
<th>REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>52</td>
<td>15</td>
<td>33</td>
<td>Moore, 1976</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>15</td>
<td>38</td>
<td>Meyreles et al, 1977</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contenido de MS (%)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29</td>
<td>18</td>
<td>16</td>
<td>Moore, 1976</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>15</td>
<td>17</td>
<td>Meyreles et al, 1977</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proteína Cruda % (N x 6.25)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29</td>
<td>15</td>
<td>11</td>
<td>Moore, 1976</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>12</td>
<td>11</td>
<td>Meyreles et al, 1977</td>
</tr>
</tbody>
</table>

Fuente: Preston (1999)

Normalmente las raíces y el follaje de la yuca recién cosechados son productos perecederos con un alto contenido de humedad, en las raíces tienen 62 a 68% de agua y en follaje 65 a 80% dependiendo de la edad de la planta, momento de cosecha y condiciones ambientales, con relación a la materia seca el 35% en raíces y el 28% en el follaje. El follaje presenta una gran variación en cuanto a calidad y cantidad por efecto de la variedad, y de la edad ya que por lo general las plantas a mayor edad menor proteína y mayor cantidad de fibra y materia seca. Las proteínas del follaje es de mucha importancia por su alto valor y calidad comparables a los del la alfalfa (Manual del ganadero actual, 2003).
1.10 SISTEMAS DE SIEMBRA Y PRODUCCIÓN DE BIOMASA

La yuca es una planta que por sus características agronómicas producen en condiciones de alta tecnología o en áreas marginales, convirtiéndose en una fuente nutricional de amplia utilización tanto sus productos primarios (raíces y follajes) y los subproductos derivados con alto potencial para la alimentación animal, es así, que la producción por hectárea de yuca llega a 25 toneladas de raíces que proporcionan 9.96 toneladas de materia seca y 34.000 mega calorías de energía metabolizable, en condiciones de producción forrajera se obtienen 100 toneladas de material verde al año proporcionando 28.4 toneladas de forraje seco 5,680 kilogramo de proteína cruda (Gil, 2003).

En otras producciones obtenidas en cultivos de yuca para forraje a través del aumento del número de plantas por hectárea a 111.000 mediante la siembra con espaciamiento de 0.3m x 0.30m., alcanzaron un rendimiento de materia seca de más de 30 toneladas durante un año, con cuatro cortes o cosechas (cada 90 días) de toda la parte aérea de la planta (Moore, 1976).

Cuando el cultivo de yuca se desea establecer de forma perenne para uso exclusivo de forraje (proteína vegetal), la densidad de siembra oscila entre 60.000 y 80.000 plantas por hectárea, cosechando a partir de los tres meses manualmente todo el forraje, con intervalos de corte de 60 a 90 días.

Si se quiere obtener un equilibrio de los sistemas agroindustriales, la densidad de siembra adecuada es 40.000 plantas por hectárea o sea 0.5 m x 0.5 m. así se ha logrado obtener 76 toneladas de raíz, 34 de tallo y 11 de forraje (hojas y tallos tiernos) sin cosecha previa de forraje en base húmeda y a los doce meses de edad promedio (Huertas, 1996).
En otros trabajos realizados según Cuadrado et al. (2003), afirma que la yuca cuando es para producción de forraje, sea ensilaje o suministro fresco, se debe sembrar a 60–80 centímetro entre surcos y 5-6 plantas por metro lineal, inclinada la estaca 45º o acostada, obteniendo densidades de 62,500 a 100,000 plantas por hectáreas.

1.11 PROPAGACIÓN Y CALIDAD DE SEMILLA

La yuca se propaga difícilmente por semilla sexual, pero la propagación vegetativa ha sido exitosa por mucho tiempo (Cock, 1989), sin embargo, en la actualidad la siembra se da por el uso de estaca, la que normalmente produce de 1 a 4 brotes que forman tallos primarios, la aparición de flores producen la ramificación de estos tallos primarios con la consecuente formación de los tallos secundarios, terciarios y así sucesivamente, de acuerdo con el ciclo de floración y ramificación de la variedad.

El aumento en la edad del tejido, trae como consecuencia el aumento en el grosor y estado de lignificación. Cuando este proceso ha avanzado lo suficiente, los tallos se consideran maduros y aptos para servir como semilla ya que su grosor y lignificación le suministra suficiente reserva nutricional y resistencia a la deshidratación. La viabilidad de la semilla, está directamente relacionada con el contenido de humedad, por lo que en una planta de 10 a 12 meses, los tallos tienen alrededor de 70% de humedad y las semillas que producen tendrán una viabilidad cercana al 100%; una vez realizado el corte se inicia la deshidratación de las estacas (López, 1994).

(Ortega, 1997) afirma que otro factor influye en la germinación de la semilla (estaca) es la preparación del suelo, disponibilidad de agua y labor de siembra.
A través del mejoramiento de la yuca buscace desarrollar variedades adaptadas al doble propósito (consumo fresco y procesamiento) donde se deben tener en cuenta los criterios de selección tales como capacidad de rendimiento, concentración de materia seca, nivel de ácido cianhídrico, color y forma de las raíces, calidad culinaria, conservación pos cosecha y resistencia a los principales limitantes bióticos (Iglesias y Calle, 1997).

La producción de semilla a través de la metodología de cultivo de tejidos a mostrado importantes ventajas en comparación con los sistemas tradicionales de propagación; tales como reducción del tiempo de multiplicación en cantidades de plantas y en un área reducida para cualquier época del año, a bajo costo y un mayor control sobre la sanidad del material que se propaga y una mayor certificación de semillas puras y de buena calidad (Roca, 1991) citado por Jaramillo (1997).

1.12 ENFERMEDADES Y PLAGAS

Una de las enfermedades actuales que es limitante de este cultivo es el superalargamiento que es causado por el hongo Sphaceloma monihoticola el cual crece en la epidermis del hospedante y luego penetra, invadiendo los espacios intercelulares de los tejidos de la epidermis y la corteza, lo que produce giberalinas, que promueve el crecimiento exagerado de los entrenudos de las plantas (Álvarez y Mejía, 2004).

La mosca blanca es otra de las plagas que provoca pérdidas económicas en los cultivos de yuca por ser transmisor de virus y otros patógenos (mosaico africano y el cuero de sapo). En el proceso de alimentación el insecto ocasiona un daño directo a través de la succión de los jugos de las hojas jóvenes lo que provoca en la planta la disminución de los jugos elaborados que desciende por el floema (CIAT, 1986). Los daños causados por la mosca
blanca radican en que afecta el rendimiento de las raíces de yuca y disponibilidad de estaca para la siembra (CIAT, 1986).

Las enfermedades importantes que afectan a la yuca en su rendimiento de producción de raíces se dan cuando crecen deficientes de potasio, pueden desarrollar la antracnosis o phythoptura, que son fungosas y causan necrosis, muerte descendente y pudrición radical. También algunas plagas como el chinche subterráneo (Cytomenus bergi), dañan directamente las raíces de la planta (Belloti, 1994). Algunos insectos inducen la defoliación esporádica, como es el caso del gusano cachón (Enyris ello), provocando daños a la planta al consumir grandes cantidades de follaje y que al presentarse en altas poblaciones pueden defollar totalmente las plantas y causar la muerte de algunas de ellas cuando llegaran a algunos casos a consumir las llamas y las partes tiernas del tallo (CIAT, 1986). Otro causante de ataque a la planta son el barrenador del tallo que se encuentra en estados larvales de coleóptera como: Coleostermes spp, Langochinus spp, que generalmente causan daños esporádicos o localizados en crecimiento de la planta o durante el almacenamiento de los tallos (Belloti, 1982) reportado por Ospina y Cevallos (2002). También desfoliadores como las hormigas cortadoras (Atta sp) lo que provoca que los agricultores hagan aplicaciones de insecticidas y tengan perdidas considerables.

1.13 SUELO Y FERTILIZACIÓN

La yuca es capaz de producir rendimientos modestos en suelos pobres y con poco o ningún fertilizante, o sea en condiciones bajo las cuales solo unos pocos cultivos crecerían. Pero esto no quiere decir que la yuca no responda a la fertilización o abonamiento y a la aplicación de algunos microorganismos que hacen parte de la microbiota del suelo como bacterias, hongos y actinomicetos que actúan en las reacciones de mineralización, reciclaje de
nutrientes y degradación de material orgánico, que favorece la fertilidad del suelo (Corpoica, 1997). Además la asociación con hongos que hacen parte de la microbiota del suelo como son las micorrizas, que existen en muchas plantas, cumpliendo una función de simbiosis favorecen a la producción de la yuca (Cano, 1999; Sánchez, 1999), reportado por Ospina y Cevallos (2002). Generalmente, a medida que aumenta la densidad de población también aumenta la presión en el suelo y por lo tanto trae como consecuencia una disminución en la fertilidad del suelo (Cock, 1989). Howeler (1981), afirma que los agricultores generalmente consideran que la yuca empobrece el suelo y por lo tanto prefieren sembrarla como el último del cultivo en las rotaciones antes de dejar descansar la tierra.

En cultivos después de 15 años de producción continua de yuca sin fertilización en el sureste de Tailandia, los rendimientos disminuyeron de un nivel inicial de 30 ton/ha a solo 17 ton/ha, pero cuando se fertilizaron estos suelos exhaustos con 375 kg/ha de nitrógeno, 164 kg/ha de fósforo y 312 kg/ha de potasio, los rendimientos aumentaron de 22 a 41 ton/ha.

1.14 ADAPTACIÓN A FACTORES BIÓTICOS Y ABIÓTICOS

Cadavid (1980), citado por López (1994), reporta deficiencia de fósforo y bajo rendimiento en los cultivos de yuca en terrenos de tipos oxisoles, ultisoles e inceptisoles de Colombia (suelos con pH menor de 4.5) en donde el contenido de fósforo aprovechable está por debajo de 3 ppm (el nivel crítico es de 10 ppm).

Irikura (1979); Keating (1981), citados por Cock (1989), presentaron datos en los cuales la ramificación se incrementa con temperaturas altas hasta un cierto nivel, pero se inhibe con temperaturas muy altas (28°C o más). También se ha demostrado que puede tolerar la siembra en áreas con
período de 5 – 6 meses y precipitaciones bajas de 750 mm. por año (Cock, 1989). La yuca se puede cultivar bajo una amplia gama de condiciones climáticas y edáficas, De Boer y Forno (1975) citado por Asher et al (1980) sugieren que las temperaturas del suelo deben ser superiores a los 18°C, considerando una precipitación anual de 1000 milímetros, límite mínimo para la producción de yuca.
2. METODOLOGÍA

2.1 UBICACIÓN Y DESCRIPCIÓN DEL ÁREA DE ESTUDIO

El trabajo se realizó en el periodo comprendido entre octubre de 2003 y agosto del 2004, en la finca “Altamonte”, propiedad del señor Mauricio Simons, ubicada en la vereda Sabanita del Norte a dos kilómetros del municipio de Sahagún—Córdoba, entre los 9°2' de latitud norte y 75° 37' de longitud oeste, situado a una altura de 60 metros sobre el nivel del mar, con temperatura promedio de 28°C y precipitación promedio anual de 1000mm distribuidos en formas bimodal, con dos ciclos de lluvia; el primero poco acentuado entre abril y mayo y el segundo más intenso entre agosto y noviembre, y dos periodos de sequía; uno corto en junio y julio y el más largo entre diciembre y marzo, perteneciente al sonobioma tropical alterno hídrico Holdridge (1967), con vegetación de bosques secos, en su mayor parte con suelos de clase IV y una capa vegetal pobre.

2.2 PREPARACIÓN DEL TERRENO

Para la realización del ensayo experimental se escogió un área de 2000 m², con un relieve plano, el que se cercó con alambre de púas. Posteriormente se tomó una muestra de suelo a la que se le practicó un análisis completo, el cual fue realizado en el laboratorio de suelos y aguas de la Universidad de Sucre. (Ver anexo E). Después de obtener los resultados, se consultó con el profesional, y consideró evaluar el cultivo en la misma forma que lo hacen tradicionalmente los campesinos de la región y así observar los rendimientos de forraje en esas condiciones de suelos pobres. En la preparación del suelo se le realizó una labranza con rastra pesada (rome) y dos pases de pulidor.
2.3 SEMILLA Y SIEMBRA

Para la siembra se utilizó material vegetativo como semilla (estacas) de 15 cm de largo, 6 entrenudos y un diámetro de 2 cm, de la variedad venezolana (Mcol 2215), que fueron obtenidos de un cultivo ya establecido en la misma explotación, la siembra se realizó el 31 de octubre del 2003 en forma manual, enterrando la estaca de 15cm verticalmente con ángulo de 45º en una tercera parte de su longitud.

2.4 RECOLECCIÓN DE DATOS DE TEMPERATURA Y PRECIPITACIÓN

2.4.1 Temperatura. En la obtención de la información de los registro de temperatura fueron tomados diariamente utilizando un termómetro ambiental, ubicado en el área del experimento, posteriormente estos registros se llevaron a una planilla para calcular promedios por mes.

2.4.2 Precipitación. Se tomaron registros de precipitación al inicio de la siembra del cultivo, donde se registraban por escrito los centímetros cúbicos de agua obtenidos en el pluviómetro localizado en el cultivo, en los días que se presentaba las lluvias.

2.5 CONTROL DE PLANTAS NO DESEABLES EN EL CULTIVO

En el manejo de plantas no deseadas antes de la siembra se utilizó glifosato en dosis de 300 cm³ en 20 litros de agua en el área experimental, el control post-emergente se realizó en forma manual con machete a los 30 y 50 días después de la siembra.
2.6 TRATAMIENTOS

Los tratamientos evaluado obedecen a la combinación de tres densidades de población (0.33m x 0.70m) 42.840 plantas/ha, (0.20m x 0.70m) plantas/ha 71.400 y (0.14m x 0.70m) 99.960 plantas/ha, tres edades de corte y dos épocas.

Los tratamientos fueron asignados al azar a las diferentes parcelas (ver plano Anexo A), cada parcela correspondía a un área de 33.33m² de (10m x 3.3m) con 2 metros de distancia entre parcelas.

2.7 DISEÑO EXPERIMENTAL

El diseño que se utilizó fue completamente al azar en un arreglo factorial 2 x 3 x 3, con tres repeticiones para un total de 27 parcelas, modelado por la ecuación:

\[Y_{ijk} = \mu + E_i + E_d + D_k + E_p + D_{ep} + D_{ep} + e_{ijkl} \]

\(Y_{ijk} \) = representa la respuesta referente a las variables de la parcela l bajo la densidad k en la edad j y la época i.
\(\mu \) = la media general.
\(E_i \) = el efecto de la época i.
\(ED_j \) = el efecto de la edad j.
\(D_k \) = el efecto de la densidad k.
\(ED_{ij} \) = el efecto de la interacción entre la época i y la densidad j
\(DenEpEd = el efecto de la interacción entre la época i, y la edad j y la densidad k.
\(e_{ijkl} \) = el error experimental
2.8 ANÁLISIS ESTADÍSTICO

Se realizó un análisis de varianza (ANAVA) para cada variable en estudio (producción de materia seca, altura y participación porcentual de la parte aérea de los componentes de la planta) considerando los efectos de densidad, época de corte, época del año y sus interacciones utilizando el procedimiento GLM de “software” SAS (1989). En las medias obtenidas fueron comparadas utilizando una prueba de comparaciones múltiples de Tukey, en la cual la discusión se centró en la significancia de dicha interacción. Para las variables de calidad nutricional (PC, FDN, FDA, C y MO en %) se le realizó un análisis descriptivo tomando una muestra conjunta a cada tratamiento.

2.9 EVALUACIÓN DEL EFECTO DE LOS DIFERENTES TRATAMIENTOS SOBRE LAS VARIABLES

- Producción de materia seca (kg de MS/ha)
- Calidad nutricional
- Relación hoja: tallo: pecíolo (porcentajes en base seca)
- Altura de la planta (m)
- Relación costo / beneficio.

2.9.1 Producción de Materia Seca. Durante el trabajo experimental se realizaron cortes a los 80, 90 y 100 días en la época seca, que comprendió finales de octubre a febrero, posteriormente al inicio de las lluvias se realizó un corte previo de emparejamiento en el mes de mayo, y nuevamente se reiniciaron los cortes a los 80, 90 y 100 días en la época de lluvia, en estos cortes, se tomaron 4 surcos por parcela, cortadas con machete a 20 cm del suelo. Se eliminaron las filas laterales de cada parcela y como unidad de observación fueron considerada las plantas restantes, las cuales eran
pesadas utilizando una balanza de reloj, luego del corte se pesaba y se determinó la producción de forraje verde, posteriormente se tomó una submuestra de 500g del material fresco recién cortado, la cual era colocada en bolsas de papel, se rotulaban y se llevaron a una estufa de ventilación forzada a 60°C por 48 horas, la muestra seca era pesada para calcular el porcentaje de materia seca, el resultado fue extrapolado a kg./ha de materia seca.

2.9.2 Calidad Nutricional. Al material obtenido se le calculó los porcentajes de: PC, FDN, FDA, C y MO, del material seco obtenido en las muestras de materias seca, se tomaron muestras, solo a los 90 días en las 2 épocas del año, reuniendo las tres (3) repeticiones de cada tratamiento, materia seca, PC, MO y cenizas, fueron realizados según (AOAC, 1984); FDN; FDA; según el método Goering y Van Soest (1970). Los análisis se realizaron en el laboratorio de nutrición animal de Corpoica; Regional 2, Centro de investigaciones “Turipana”.

2.9.3 Participación de Hojas, Tallos y Pecíolos. Se escogieron 15 plantas de cada parcela, cortadas a los 80, 90 y 100 días tanto en época seca como en época de lluvia, a una altura de 20cm sobre el nivel del suelo, a la vez se tomó una muestra de 100g. de cada parte de la planta, se almacenaban en bolsas de papel rotuladas, que fueron llevadas a la estufa de ventilación forzada a 60°C x 48 horas, luego las muestras se pesaron utilizando una balanza de reloj para calcular el porcentaje de materia seca de cada parte de la misma, para determinar la proporción en que se encontraba las partes de la planta

2.9.4 Altura de la Planta. En la determinación de la altura de planta, se tomaron 20 plantas/paercla en las cuales se midió la altura cada 15 días con una regla cuya unidad era el centímetro (cm), se medió desde el nivel del
suelo hasta la parte más alta de la planta, donde se determinó el crecimiento de la planta para el primer corte y el segundo corte.

2.9.5 Relación Beneficio - Costo. El análisis económico se realizó teniendo en cuenta los costos de establecimiento de cada tratamiento y la producción de forraje verde alcanzada, así se obtuvo la utilidad neta de cada tratamiento.
3. RESULTADOS Y DISCUSIÓN

En el Cuadro 3, se observan las medias obtenidas para las variables agronómicas de producción para los factores edad, época y densidad.

Cuadro 3 Medias de las diferentes variables agronómicas en estudio para la época, edad de corte y densidad de siembra de la variedad venezolana (Mcol 2215) en el municipio de Sahagún – Córdoba.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Materia seca/ha %</th>
<th>Forraje fresco Kg/ha</th>
<th>Materia seca Kg/ha</th>
<th>Altura cm</th>
<th>Proporción hoja (seco) %</th>
<th>Proporción tallo (seco) %</th>
<th>Proporción peciolo (seco) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Época</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seca</td>
<td>28.8 a</td>
<td>2214.4 b</td>
<td>636.3 a</td>
<td>37.9b</td>
<td>52.98 a</td>
<td>31.4 a</td>
<td>15.7 a</td>
</tr>
<tr>
<td>Lluvia</td>
<td>24.2 b</td>
<td>8840.3a</td>
<td>2140.4 b</td>
<td>89.0 a</td>
<td>40.6 b</td>
<td>42.3 a</td>
<td>17.1 a</td>
</tr>
<tr>
<td>Edad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>26.6 a</td>
<td>6062.6 a</td>
<td>1476.2 a</td>
<td>59.9 a</td>
<td>49.2 a</td>
<td>33.3 a</td>
<td>17.4 a</td>
</tr>
<tr>
<td>90</td>
<td>28.5 a</td>
<td>5679.4 a</td>
<td>1535.4 a</td>
<td>62.9 a</td>
<td>46.7 a</td>
<td>38.8 a</td>
<td>14.5 a</td>
</tr>
<tr>
<td>100</td>
<td>24.4 b</td>
<td>4840.1 a</td>
<td>1153.5 b</td>
<td>69.4 a</td>
<td>44.4 a</td>
<td>38.3 a</td>
<td>17.2 a</td>
</tr>
<tr>
<td>Densidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.840</td>
<td>26.3 a</td>
<td>5472.5 a</td>
<td>1280.7 a</td>
<td>62.6 a</td>
<td>46.9 a</td>
<td>34.2 a</td>
<td>18.8 a</td>
</tr>
<tr>
<td>71.400</td>
<td>27.3 a</td>
<td>5448.4 a</td>
<td>1460.2 a</td>
<td>58.2 a</td>
<td>48.2 a</td>
<td>36.5 a</td>
<td>15.3 a</td>
</tr>
<tr>
<td>99.960</td>
<td>25.9 a</td>
<td>5661.1 a</td>
<td>1418.1 a</td>
<td>61.5 a</td>
<td>45.2 a</td>
<td>39.9 a</td>
<td>14.9 a</td>
</tr>
</tbody>
</table>

Medias con letras iguales en las columnas para cada variable en estudio difiere significativamente, según la prueba de Tukey ($\alpha = 0.05$)

La producción de materia seca varió significativamente (P<0.01) entre edades de corte y época del año; pero no difirió para densidades y el resto de interacciones (P>0.05), como se observa en los resultados obtenidos en el análisis de varianza (Anexo F).
Se observa en la Figura 1, que la mayor producción de materia seca (P<0.05) correspondió a la época de lluvia, con un promedio de 2.140.4 kg/ha. Luego esta producción descendió marcadamente en la época seca a un promedio de 636.6 kg/ha, obteniendo un total de 2.777 kg/ha de materia seca /año. Considerando la época del año a uno de los factores que intervienen en la producción de la planta. Esto se debe posiblemente a que en la época seca la planta disminuye la producción de nuevas hojas y elimina las hojas viejas que han cumplido su papel y longevidad. Además, la escasa precipitación lleva a la Yuca un estado de latencia, en el cual reduce el crecimiento, nuevamente al llegar las primeras lluvias, reinicia su desarrollo, (Losch, 1995) reportado por Pozo (1998), afirma que el agua, es el componente esencial de la célula y todos los procesos metabólicos involucrados con la fotosíntesis de la planta, sucede lo contrario cuando hay un estrés hídrico por sequía que afecta el comportamiento fisiológico y morfológico de la planta. En otros estudios realizados, Rosero et al. (2002), bajo el enfoque de evaluación de las diferentes densidades de siembra y diferentes variedades, en localidades distintas de Colombia, la tendencia de los resultados de producción de materia seca fueron similares, mayor en época de lluvia con 6.189 kg/ha y para la época seca de 1.420 kg/ha.
Figura 1. Producción de materia seca (Kg./ha) por época del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra.

En la Figura 2, se observa que el mejor rendimiento de materia seca (P<0,01) en las tres edades de corte correspondieron a los 80 y 90 días de corte con medias de 1.476,2kg/ha y 1.5354kg/ha respectivamente, con un número de cortes de 4.6 y 4 por año; mientras que a los 100 días de corte disminuye considerablemente la producción de materia seca a un promedio de 1.153,5kg/ha, al igual que el número de corte al año, para un total de 4.165,1 kg/ha/año de materia seca. Es de suponer que al momento del corte de la planta, el mejor rendimiento de materia seca se obtiene a los 80 y 90 días de edad. Este comportamiento se debe posiblemente, a que, al momento del corte la planta se encuentra en la mayor actividad fisiológica de absorción y acumulación de nutrientes por parte de la raíces, que luego las dirige hacia el crecimiento y desarrollo de la parte aérea; además, que a medida que pasa el tiempo, parte de las hojas de la planta se caen,
cumpliendo su ciclo de madurez (CIAT, 1989). También pudo afectar que la planta estuvo más tiempo expuesta a un estrés hídrico por la época de sequía.

Figura 2. Producción de materia seca (kg/ha) por época del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra en tres edades de corte.

En la Figura 3, se observa el comportamiento de las tres densidades de siembra sobre el rendimiento de producción de materia seca, no mostró diferencia significativa (P>0.05) entre las distintas densidades de siembra. Esto se debe posiblemente a que la materia seca está muy relacionada con la densidad de siembra y la producción de forraje verde, teniendo en cuenta que al elevar el número de plantas, la presión sobre las comunidades de planta va a ser mayor, por la competencia de recepción de luz solar, nutrientes y la humedad en el suelo, además de la concentración de los nutrientes contenidos en los tejidos de la planta.
Figura 3. Producción de materia seca (Kg./ha) por época del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra.

Con relación al porcentaje de materia seca se encontró diferencia altamente significativa (P<0.01) para la época del año y edades de corte, mientras que para la densidad y las interacciones no registraron diferencias significativas (P>0.05), así se observa en los resultados obtenidos (Anexo F) en el análisis de varianza.
Se observa en la Figura 4, que el mayor porcentaje de materia seca correspondió a la época de sequía, con un promedio de 28.8%, después se reduce considerablemente en la época de lluvia a un promedio de 24.4%; es de considerar que la época es un factor que incide en la concentración de los nutrientes en la parte aérea de la planta, debido probablemente a que en la época seca, los tejidos tienen menor contenido de agua en su célula, caso contrario sucede en la época de lluvia, en donde la planta inicia sus actividades fisiológicas y aumenta la disolución del jugo celular en los tejidos de la planta.

Figura 4. Porcentaje de materia seca por época del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra
Se observa en la Figura 5, que el mayor porcentaje de materia seca (P<0.01) se dio a los 80 y 90 días de corte con un promedio de 26.6% y 28.5% respectivamente; mientras que a los 100 días de corte se baja considerablemente el porcentaje, a un promedio de 24.4%.

Figura 5. Porcentaje de materia seca por época en el cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra en tres edades de corte.

En los resultados de producción de forraje fresco, se registró diferencia altamente significativa (P<0.01) para la época del año y no para las densidades y las edades de corte (P>0.05), de igual forma para las otras interacciones no hubo significancia, así se observa en los resultados obtenidos en el análisis de varianza (Anexo F).
Se observa, en la Figura 6, que los mejores rendimientos de forraje fresco fueron en la época de lluvia con un promedio de 8.840.3kg/ha, descendiendo casi a más de la mitad en la época seca con un promedio de 2.214.4kg/ha, obteniendo un total de producción de forraje fresco de 1.1054.7kg/ha/año. Esto indica que la producción de forraje fresco está estrechamente relacionada con la adecuada humedad del suelo, lograda cuando se presentan las precipitaciones. Además el régimen bimodal de distribución de lluvias, afectó la producción de forraje fresco, es así, que entre finales de octubre y febrero, periodo donde hubo escasez de lluvias, la producción se redujo, al igual que sucedió con la producción de materia seca a la que afecta la época del año, coincidiendo con Losch (1995), reportado por Pozo, (1998), quien afirma que el agua es el componente esencial de las células y de todo los procesos metabólicos de la planta.

Figura 6. Producción de forraje fresco (kg/ha) por época del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra
En la Figura 7, se observa las medias de producción de forraje fresco, que no difiere significativamente (P>0.05) para la densidades de siembra, al igual que ninguno de los factores y sus interacciones. Esto se debe posiblemente a que al elevar la densidad de siembra la competencia por espacio, captación de luz solar y sustancias nutritivas del suelo sea mayor. Además la no aplicación de ningún correctivo para la acidez y la no fertilización pudo incidir en los rendimientos similares encontrados entre las diferentes densidades.

Figura 7. Producción de forraje fresco (Kg./ha) por época del cultivo de variedad venezolana (Mcol 2215) bajo tres densidades de siembra.
Figura 8. Efecto de la precipitación sobre el rendimiento de forraje fresco en las dos épocas del año en Sahagún – Córdoba – Colombia. variedad venezolana (Mcol 2215)

En relación a la altura de la planta se observó diferencia altamente significativa (P<0.01) para la época del año y no para las densidades ni edades de corte (P>0.05) la tendencia fue similar para las interacciones de estos factores (P>0.05), cuales se observaron (Anexo F), en los resultados obtenidos en el análisis de varianza.

En la Figura 9, se observa que la altura superior de la planta (P<0.01) en la época de lluvia con un promedio de 89 cm, y en la época seca se redujo casi a la mitad con un promedio de 37.9 cm. Considerando a la época del año un factor que incide marcadamente en el crecimiento de las plantas, debido a
que en la época de lluvia en el suelo hay un mayor gradiente de agua que disuelve los minerales que se encuentra en él, estimulando una mejor facilidad de absorción de sustancia nutritivas por medio de procesos biológicos a través de las vellosidades filamentosas de las raíces, lo que contribuyen con la producción del cultivo. Pozo (1998) afirma que el crecimiento de la planta intervienen factores que están asociados a los ambientes aéreos, edáficos y a la especie vegetal (potencial genético). Otros autores aseguran que la planta en época seca reduce el área foliar y cierre de los estomas afectando el crecimiento (Connor et al. 1980) reportado por Cock (1989).

Figura 9. Altura de la planta por época del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra.
Con relación a las proporciones de la hoja de la planta, la cual registró diferencia altamente significativa (P<0.01) para la época del año. Para la densidad y edades no se encontraron diferencias significativas (P>0.05), la disposición fue similar para la interacciones de los factores, que se pueden observar en los resultados obtenidos (Anexo F) en los análisis de varianza.

En la Figura 10, se observa que la mayor proporción de hojas fue en la época seca con un porcentaje de 52.9 y disminuye en la época de lluvia a un porcentaje promedio de 40.6. Es de suponer que la época es un factor que incurre sobre la producción de hojas. Esto se debe posiblemente a que la siembra de la yuca fue en los últimos días de lluvia iniciando con la época seca lo que ocasiona un mayor acumulo de materia seca en las partes de la planta, para resistir la adversidad del tiempo. Ospina y Cevallos (2002) concluyeron que en la yuca durante los primeros tres meses después de la siembra, la formación de las hojas tiene prioridad sobre las raíces.

Figura 10. La proporción de hoja de la planta por época en base seca del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra
Para la variable proporción de tallo se encontró significancia \(P<0.05\) para la interacción entre los factores época y edad de corte. Esto debido al comportamiento que tuvieron las diferentes edades para cada época.

En la Figura 11, se puede observar para el corte a los 80 días un promedio de 41.9\%, y a los 90 días un promedio de 45.2\%, en época de lluvia y en la época de sequía fue a los 80 días fue de 24.9\% y a los 90 días 32.4\% que tienen un comportamiento similar con la mayor proporción de tallo en época de lluvias con una media de 42.3\%, y la menor en la época de seca con una media de 31.4\%, mientras que a los 100 fue de 39.9\% y 36.9\%; las diferencias entre épocas no se encontraron.

Figura 11. Proporción del tallo en base seca por época del cultivo de la variedad venezolana (Mcol 2215) bajo tres densidades de siembra y tres edades.
Cuadro 4. Medias de las diferentes variables en estudio para edad de corte y densidad de siembra en la época seca de la variedad venezolana (Mcol 2215) en el municipio de Sahagún – Córdoba.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Materia seca (%)</th>
<th>Forraje fresco kg/ha</th>
<th>Materia seca kg/ha</th>
<th>Altura (cm)</th>
<th>Proporción de hoja (seco) %</th>
<th>Proporción de peciolos (seco) %</th>
<th>Proporción de tallo (seco) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad de corte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>29.6 a</td>
<td>2561.5 a</td>
<td>734.8 a</td>
<td>38.61 a</td>
<td>56.8 a</td>
<td>18.4 a</td>
<td>24.9 b</td>
</tr>
<tr>
<td>90</td>
<td>31.6 a</td>
<td>2306.8 a</td>
<td>729.5 a</td>
<td>35.7 a</td>
<td>53.8 a</td>
<td>13.8 b</td>
<td>32.4 a</td>
</tr>
<tr>
<td>100</td>
<td>25.2 b</td>
<td>1775.0 a</td>
<td>444.5 a</td>
<td>39.4 a</td>
<td>48.4 a</td>
<td>14.7 b</td>
<td>36.9 a</td>
</tr>
<tr>
<td>Densidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.840</td>
<td>29.1 a</td>
<td>1821.4 a</td>
<td>739.9 a</td>
<td>35.8 a</td>
<td>54.2 a</td>
<td>16.8 a</td>
<td>28.9 a</td>
</tr>
<tr>
<td>71.400</td>
<td>29 a</td>
<td>2231.3 a</td>
<td>655 a</td>
<td>37.9 a</td>
<td>53.4 a</td>
<td>15.1 b</td>
<td>31.8 a</td>
</tr>
<tr>
<td>99.960</td>
<td>28.4 a</td>
<td>2590.5 a</td>
<td>513.9 a</td>
<td>40.2 a</td>
<td>51.4 a</td>
<td>15.1 b</td>
<td>33.5 a</td>
</tr>
</tbody>
</table>

Medias con letras iguales en las columnas para cada variable en estudio no difieren significativamente, según la prueba de Tukey ($\alpha = 0.05$).

Cuadro 5. Medias de las diferentes variables en estudio para edad de corte y densidad de siembra en la época de lluvia de la variedad venezolana (Mcol 2215) en el municipio de Sahagún – Córdoba.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Materia seca (%)</th>
<th>Forraje fresco kg/ha</th>
<th>Materia seca kg/ha</th>
<th>Altura (cm)</th>
<th>Proporción de hoja (seco) %</th>
<th>Proporción de peciolos (seco) %</th>
<th>Proporción de tallo (seco) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad de corte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>23.5 a</td>
<td>9564 a</td>
<td>23412.2 a</td>
<td>81.4 a</td>
<td>41.6 a</td>
<td>16.4 a</td>
<td>41.9 a</td>
</tr>
<tr>
<td>90</td>
<td>25.4 a</td>
<td>9052 a</td>
<td>22176 a</td>
<td>90.2 a</td>
<td>39.5 a</td>
<td>15.2 a</td>
<td>45.2 a</td>
</tr>
<tr>
<td>100</td>
<td>23.6 a</td>
<td>7905 a</td>
<td>18625.2 a</td>
<td>95.5 a</td>
<td>40.5 a</td>
<td>19.6 a</td>
<td>39.9 a</td>
</tr>
<tr>
<td>Densidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.840</td>
<td>23.4 a</td>
<td>9124 a</td>
<td>22654 a</td>
<td>90.9 a</td>
<td>39.7 a</td>
<td>20.9 a</td>
<td>39.4 a</td>
</tr>
<tr>
<td>71.400</td>
<td>25.5 a</td>
<td>8665 a</td>
<td>20964 a</td>
<td>81 a</td>
<td>42.9 a</td>
<td>15.5 a</td>
<td>41.5 a</td>
</tr>
<tr>
<td>99.960</td>
<td>23.6 a</td>
<td>8732 a</td>
<td>20595 a</td>
<td>87 a</td>
<td>39.1 a</td>
<td>14.8 a</td>
<td>46.1 a</td>
</tr>
</tbody>
</table>

Medias con letras iguales en las columnas para cada variable en estudio no difieren significativamente, según la prueba de Tukey ($\alpha = 0.05$).
3.1 FERTILIZACIÓN Y CORRECTIVOS

En el diagnóstico de los requerimientos nutricionales del suelo para el cultivo de yuca de la variedad venezolana (Mcol 2215), se observó en el análisis físico-químico del suelo el estado nutricional en que fue establecido el cultivo, donde el contenido de nitrógeno fue de 46,5 kg/ha, fósforo (P₂O₅) fue de 36,5 kg/ha, potasio (K₂O) fue de 209.7 kg/ha y magnesio (MgO) fue de 1.155,1 kg/ha.

Teniendo en cuenta que el cultivo de yuca para producir 40 ton/ha de raíces, necesita elementos esenciales en las siguientes cantidades: de nitrógeno 150 kg/ha, fósforo (P₂O₅) 70 kg/ha, potasio (K₂O) 350kg/ha y magnesio (MgO) 40 kg/ha. reportado por Ospina y Cevallos, (2002). Lo que indica que hay una deficiencia en suelo de nutrientes como nitrógeno, fósforo y potasio, y un excedente de magnesio. Esta deficiencia de minerales afectó posiblemente el crecimiento y desarrollo vegetal de la yuca, además, había que aplicar cal agrícola para contrarrestar la presencia de aluminio intercambiable y mejorar la relación calcio-magnesio, la cual no se aplicó al igual que ningún fertilizante. También es de tener en cuenta que cuando la yuca se siembra para producción de forraje los requerimientos nutricionales son mayores que cuando se siembra para la extracción de raíces. Por ejemplo, la planta extrae por tonelada de forraje fresco de nitrógeno 8.42kg/ha en promedio y mientras que para la raíz es de 4.42kg/ha (Ospina et al. 2003). Lo que incidió considerablemente el los rendimientos de producción de forraje fresco y materia seca. Howell et al. (1974) reportado por Howeler (1981) afirma que la deficiencia de nitrógeno, fósforo y potasio reduce el crecimiento de la planta, tallos delgados y hojas pequeñas. Cock (1989) afirma que la deficiencia de potasio en el suelo disminuye la acumulación de la materia seca en las raíces.
En el cuadro 6, se observan las medias del porcentaje de proteína cruda de la parte aérea de la yuca, mostrando una variación mínima en el contenido de proteína en la época seca, con valores que oscilan entre 20.2 y 23.9%, de igual forma para la época de lluvia la variación fue mínima con valores que oscilaron entre 17.5 y 21.3% respectivamente. La composición nutricional del forraje de yuca en cuanto a la calidad y cantidad, se puede ver afectada por una gran variación de factores, como tipo de cultivo, condiciones y clase de suelo, condiciones, climatológicas (especialmente precipitación) edad de la planta, época de corte, proporción entre lamina foliar-peciolo y tallo.

En cuanto a la FDN, FDA, Ceniza y Materia orgánica, se encontró una media a los 90 días de corte para FDN de 57.7%, FDA 47.0 %, ceniza 5.8% y materia orgánica 94.2% en la época seca, mientras que para la época de lluvia el FDN fue de 41.7%, FDA 35.4%, ceniza 5.4% y materia orgánica 94.6%, donde el FDN y FDA disminuyen considerablemente en esta época de lluvia con relación a la época seca, esto se debe posiblemente a que en la época de lluvia el contenido de humedad es mayor, aumente la solución de los nutrientes en la célula, en contraste con la época seca la humedad es menor y la disolución de nutrientes disminuye, y los procesos metabólicos son afectados a partir del agua capilar. (a 15 atmósfera o mas punto de marchites).
Cuadro 6. Análisis de calidad y producción de materia seca de la yuca venezolana (Mcol2215) en dos épocas del año

<table>
<thead>
<tr>
<th>Época seca Edad(dias)</th>
<th>Materia seca Ton/Ha</th>
<th>Proteína Cruda %</th>
<th>FDN %</th>
<th>FDA %</th>
<th>Cenizas %</th>
<th>Materia Orgánica %</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>734,8</td>
<td>23.9</td>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>90</td>
<td>729,5</td>
<td>20.2</td>
<td>57.9</td>
<td>47</td>
<td>5.8</td>
<td>94.2</td>
</tr>
<tr>
<td>100</td>
<td>444,5</td>
<td>22.2</td>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Lluvia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2217,6</td>
<td>21.3</td>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>90</td>
<td>2341,2</td>
<td>17.5</td>
<td>41.7</td>
<td>35.4</td>
<td>5.4</td>
<td>94.6</td>
</tr>
<tr>
<td>100</td>
<td>1862,5</td>
<td>19</td>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>--------------------</td>
</tr>
</tbody>
</table>

FDN: Fibra detergente neutro
FDA: Fibra detergente ácido.
Procesado: Por el laboratorio nutricional animal. Corpoica, Regional 2.
Centro de investigación “Turipana”.

56
Se observa en el Cuadro 7, que la densidad de siembra de menor costo fue la población de 42.840 plantas/ha, con un costo de $1.433.500, con relación a la densidad mayor de 99.960 planta/ha que fue de mayor costo de producción $1.901.550, y un costo intermedio para la densidad de 71.400 planta/ha de $1.687.350, considerando que al sembrar se debería tener en cuenta la de menor costo de producción; de igual manera dando que en el rendimiento de producción de forraje y materia seca, según la densidad no mostró diferencia significativa en el rendimiento, se recomienda que la densidad de siembra que se debería utilizar sería la de 42.840 planta/ha con un costo de $1.433.500, igualmente se estima el costo de producción del kilogramo de forraje verde yuca por hectárea, con la densidad de 42.840 plantas /ha con un costo de $262/Kg. de forraje verde, con relación a la densidad mayor de 99.960 plantas /ha que fue el de mayor costo de producción con valor de $336/Kg. de forraje verde y un costo intermedio para la densidad de 71.400 plantas /ha que fue de $310/Kg. de forraje verde; considerando los altos costo fijos en compra de material de siembra, siembra y cosecha del forraje posiblemente aumenten el costo de producción del kilogramo de forraje verde, también hay que tener en cuenta que los costo fijos serán repartido durante todo el tiempo que dure la productividad del cultivo, además al revisar los costos de producción de la hectárea de yuca forrajera bajo tres densidades de siembra (Ver anexo B) se encontró que los rubros de siembras, incluyendo material de siembra y cosecha son los más altos, probablemente con la utilización de máquinas sembradoras y cosechadoras mecanizadas, los costos se puedan reducir significativamente.
Cuadro 7. Costo de producción del cultivo de yuca de la variedad venezolana (Mcol 2215) bajo el efecto de tres densidades de siembra.

<table>
<thead>
<tr>
<th>Número de plantas/ha</th>
<th>Costo /ha ($)</th>
<th>Producción de forraje verde kg/ha</th>
<th>Costo del forraje verde Kg./ha ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.840</td>
<td>1'433.500</td>
<td>5.472,5</td>
<td>262</td>
</tr>
<tr>
<td>71.400</td>
<td>1'687.350</td>
<td>5.448,4</td>
<td>310</td>
</tr>
<tr>
<td>99.960</td>
<td>1'901.550</td>
<td>5.661,1</td>
<td>336</td>
</tr>
</tbody>
</table>

3.2 RESULTADO DE TEMPERATURA Y PLUVIOSIDAD MENSUAL TOMADOS DEL ÁREA DE EXPERIMENTAL

Los datos generales con respecto a las exigencias climáticas de la yuca, la presentan como un cultivo de amplio rango en su manejo, sin embargo al igual que otras plantas poseen características fisiológicas y morfológicas propias que le brindan adaptación específica para su crecimiento y calidad, que pueden ser afectado cuando ocurren cambios en las condiciones climáticas, siendo la temperatura y las precipitaciones los componentes importantes que intervienen en las condiciones tropicales, de igual forma la humedad relativa, viento, suelo y microbiota (García y Montalvo, 1969).

Los requerimientos hídricos de la yuca fluctúan entre 500 - 2000mm/año, como consecuencia el cultivo se adapta bien a una gran cantidades de regiones tropicales y subtropicales, que se caracterizan por poseer las condiciones citadas por García y Montalvo (1969). De acuerdo a las precipitaciones y su distribución a través del año actúa notablemente en el crecimiento y calidad del forraje, ya que se encuentra en relación muy
estrecha con los factores bioquímicos y fisiológicos que regulan estos procesos biológicos de gran complejidad (Pozo, 1998).

Como se observa en la Figura 12, donde se muestra fluctuaciones de régimen de lluvias entre los meses de octubre a abril que coincide con el inicio de la época seca y mes de mayo a septiembre que coincide con la época de lluvia; lo cual influye sobre el crecimiento de las especies vegetales y determina la mayor o menor producción de biomasa forrajera de yuca encontrados en el estudio de investigación realizado.

Figura 12. Precipitación mensual de pluviosidad

![Bar chart showing monthly precipitation](chart.png)

En los datos obtenidos del área de estudio en el 2003 a 2004 en la finca Altamonte municipio de Sahagún - Córdoba, perteneciente al señor Mauricio
Simón, en los meses de evaluación sobre el efecto de tres densidades de siembra sobre la producción de forraje y valor nutritivo de la yuca venezolana, se encontró una temperatura promedio de 28,4 °C, lo cual según Guzmán y Pérez, (1992), informaron que a temperaturas de 24°C o más las hojas de yuca alcanzan su total expansión alas dos semanas después de iniciar su crecimiento y que a temperaturas menores el desarrollo es más lento.

García y Montalvo, (1970), reporta que la yuca se puede someter a una variación de temperaturas de (15 – 29 °C).

Por lo que la temperatura durante el periodo de evaluaciones se mantuvo dentro del margen que reporta García y Montalvo, (1969), lo que puede o no afectar la producción de forraje de la yuca.

Figura 13. Temperatura mensual.

![Diagrama de Temperatura Mensual]
4. CONCLUSIONES

- Los rendimientos de forraje obtenidos de la variedad de yuca venezolana (Mcol 2215) a diferentes densidades de plantación, muestran que al utilizar cualquiera de ellas se van a obtener los mismos resultados de producción forrajera, pero al momento de escoger la densidad de siembra se tendrá en cuenta la de menor costo de producción que fue la de 42,840 plantas/ha con un costo de 1'433,500.

- La disponibilidad de agua fue un factor determinante en le rendimiento de forraje de yuca en las densidades de siembra y edades de corte.

- Fisiológicamente la planta no presentó diferencia en su altura definitiva cuando se sometió a las diferentes densidades de siembra utilizadas en el estudio en la misma época. Sin embargo hubo diferencia en la altura entre las dos épocas del año (seca y lluvia).

- La edad y la densidad no afecta la composición de la parte aérea de la planta, pero si la época del año.

- Observando la composición química nutricional de la planta de yuca, se puede concluir que es un alimento con un alto potencial de uso en la alimentación de rumiantes, sus niveles de FDN y FDA, al igual que la PC la convierte en un alternativa viable nutricionalmente para ser utilizada como complemento de la dieta base (pasto).

- De acuerdo a la mayor producción de la parte área de la planta así va a ser el contenido nutricional de la misma.

- La edad de corte más adecuada para obtener mayor producción de forraje y materia seca está entre 80 y 90 días.
5. RECOMENDACIONES

- Es recomendable que se realicen evaluaciones de otras variedades de yuca que estén adaptadas a la producción de forraje ya que estas pueden convertirse en una alternativa de alimentación en hatos ganaderos.

- Es de gran importancia elevar el rendimiento en las diferentes densidades de siembra en la producción de forraje fresco, a través de introducción de prácticas con técnicas apropiadas sobre el manejo del cultivo: riego oportuno, un plan de fertilización y enmienda, y un adecuado manejo de la biomasa indeseable y problemas fitosanitario si se presentan.

- Como nuestro departamento tiene variedad de suelos y fertilidad, que afectan los rendimientos de producción de los cultivos, es recomendable realizar previamente una caracterización físico-química y microbiológica del suelo, para definir el paquete tecnológico en cada agroecosistema.
REFERENCIAS BIBLIOGRÁFICAS

• CORPOICA, Corporación Colombiana de Investigación Consorcio latinoamericano de Apoyo de Investigación y Desarrollo de la Yuca (CLAYUCA),Centro Internacional de Agricultura Tropical (CIAT); (1986): nuevas variedades de yuca para uso industrial en la región caribe colombiana, Cali, Colombia.16 p.

• GARCIA, J; Montaldo, A; (1969) exigencias hídricas de la yuca o mandioca (manihot esculenta cranzt) Venezuela ;disponible en Internet consultado el 18 de agosto de 2004. http://-. www.repadvf-polar.ve/agrotrop/v.21-1/v2lla 004htm

• GUZMAN, N.; PEREZ, R;(1992). Evaluación del cultivo de la yuca Manihot esculenta cranzt en diferentes densidades de población en una zona del municipio de puerto libertador, Córdoba trabajo de grado Montería universidad de Córdoba. 177p

• HOWELE, R; (1981). Nutrición mineral y fertilización de la yuca. Cali Colombia, Centro Internacional de Agricultura Tropical. 55 p

• IGLESIAS, C; Calle, F;(1997). Primer encuentro técnico nacional de producción y transformación de la yuca (memorias) perspectivas de la investigación en yuca en Colombia. noviembre, Tolú-sucre, Colombia.77-88p.

• JARAMILLO, M; (1997). Primer encuentro técnico nacional de producción y transformación de la yuca (memorias). Producción de semillas genéticas, básicas y certificadas de cuatro variedades y tres clones promisorios de yuca, para la región caribe colombiana. noviembre Tolú-Sucre, Colombia.49-56p.

• Ministerio de agricultura y desarrollo rural (1996). La economía de la yuca en Colombia, Santafe de Bogotá Colombia. 62p

• MUSKUS, R; SALCEDO, M; SARRIAGA, S; (1997). Primer encuentro técnico nacional de producción y transformación de la yuca (memorias) avances tecnológicos en la fermentación de almidón de yuca . noviembre, Tolú-sucre, Colombia. 159-163p.

- **OSPINA, B; CEVALLOS, H; (2002). La yuca en el tercer milenio. Sistemas modernos de producción, procesamiento, utilización y comercialización. Mayo. Cali – Colombia. p. 34 – 85.**

- **ROSEDO, D; QUINTERO , H; CADAVIL, L y OSPINA, B; (2002) En: revista acta agronómica Vol. 51: influencia de sitio, variedad y densidad de siembra en la producción y calidad del forraje de yuca. Consorcio latinoamericano de Apoyo de Investigación y Desarrollo de la Yuca (CLAYUCA), Centro Internacional de Agricultura Tropical (CIAT), Cali Colombia. p. 113-119.**

ANEXOS
ANEXO A: PLANO DEL ENSAYO

- 2m indica la separación de las parcelas.
- 10m x 3.3m (33.3m²) área total por parcela. La misma área es para las demás parcelas.
- El área total de las parcelas es de 60m x 30m (1800m²)
ANEXO B: UBICACIÓN DEL ENSAYO MAPA DEL MUNICIPIO DE SAHAGÚN
ANEXO C. ANÁLISIS FÍSICO-QUÍMICO DEL SUELO EN EL MUNICIPIO DE SAHAGÚN – CÓRDOBA.

UNIVERSIDAD DE SUCRE
CENTRO DE LABORATORIOS
"UNIVERSIDAD CON CALIDAD PARA EL DESARROLLO REGIONAL"

RESULTADOS DE ANÁLISIS DE SUELOS (CARACTERIZACIÓN)

<table>
<thead>
<tr>
<th>FECHA</th>
<th>10 de Octubre de 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTAMENTO</td>
<td>Córdoba</td>
</tr>
<tr>
<td>CORREGIMIENTO</td>
<td>Sabanita del Norte</td>
</tr>
<tr>
<td>PROPIETARIO</td>
<td>Mauricio Simona</td>
</tr>
<tr>
<td>MUNICIPIO</td>
<td>Sahagún</td>
</tr>
<tr>
<td>FINCA</td>
<td>Altamente</td>
</tr>
<tr>
<td>CULTIVO</td>
<td>Yuce</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DETERMINACIÓN</th>
<th>VALOR</th>
<th>INTERPRETACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (AGUA 1:5)</td>
<td>5.60</td>
<td>Muy Fuertemente Ácido</td>
</tr>
<tr>
<td>MATERIA ORGÁNICA (%)</td>
<td>1.66</td>
<td>B</td>
</tr>
<tr>
<td>FOSFATO (PPM) BRAY II</td>
<td>5.70</td>
<td>B</td>
</tr>
<tr>
<td>C.I.C (meq./100 gr. SUELO) (E)</td>
<td>12.10</td>
<td>M</td>
</tr>
<tr>
<td>CALCIO (meq./100 gr. SUELO)</td>
<td>2.11</td>
<td>M</td>
</tr>
<tr>
<td>MAGNESIO (meq./100 gr. SUELO)</td>
<td>2.06</td>
<td>M</td>
</tr>
<tr>
<td>POTASIO (meq./100 gr. SUELO)</td>
<td>0.16</td>
<td>B</td>
</tr>
<tr>
<td>SODIO (meq./100 gr. SUELO)</td>
<td>0.61</td>
<td>M</td>
</tr>
<tr>
<td>ALUMINIO (meq./100 gr. SUELO)</td>
<td>0.30</td>
<td>M</td>
</tr>
<tr>
<td>TEXTURA (BOUYOUCOB)</td>
<td>F A</td>
<td>Franco Armando</td>
</tr>
<tr>
<td>ARENA (%)</td>
<td>60.00</td>
<td></td>
</tr>
<tr>
<td>ARCILLA (%)</td>
<td>17.75</td>
<td></td>
</tr>
<tr>
<td>L. M.0 (%)</td>
<td>22.25</td>
<td></td>
</tr>
<tr>
<td>SATURACIÓN DE CALCIO (%)</td>
<td>17.44</td>
<td>M.B.</td>
</tr>
<tr>
<td>SATURACIÓN DE MAGNESIO (%)</td>
<td>17.02</td>
<td>M</td>
</tr>
<tr>
<td>SATURACIÓN DE SODIO (%)</td>
<td>8.04</td>
<td>B</td>
</tr>
<tr>
<td>SATURACIÓN DE ALUMINIO (%)</td>
<td>2.48</td>
<td>B</td>
</tr>
<tr>
<td>CALCIOMAGNESIO</td>
<td>1.02</td>
<td>Estrecha</td>
</tr>
<tr>
<td>Densidad Aparente (g/lcor)</td>
<td>1.45</td>
<td>%H 14.5</td>
</tr>
</tbody>
</table>

INTERPRETACIÓN Y OBSERVACIONES:
M.B.: Muy Baja B: Baja M: Media A: Alta
M.A.: Muy Alta E: Excesivo M.E.: Muy Excesivo

Muestra #1. (0.0 - 20.00 cm)
Consultar con el profesional especializado de la zona para la aplicación de enmiendas, plan de fertilización y los manejo de los recursos suelos, aguas y cultivos

ANTONIO TOVAR ORTEGA
Análisis
Calle 28 N° 5 - 267 Bario Pucará Raja A.A. 406, NIT. 820.208.323-9
Tel.: 3212420 - 3212427 - 3212455, Fax: 3212449 - 3212444
Email: centrosde laboratorios @unicesme.edu.co, BESCELESTU SUCRE COLOMBIA
ANEXO D: COSTO DE PRODUCCIÓN DEL CULTIVO DE YUCA DE LA
VARIEDAD VENEZOLANA (MCOI 2215) BAJO EL EFECTO DE TRES
DENSIDADES DE SIEMBRA, EN EL MUNICIPIO
DE SAHAGÚN CÓRDOBA

Estructura de costo de la densidad de siembra de 42840 plantas /ha

<table>
<thead>
<tr>
<th>Actividad / Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Costo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Análisis del suelo</td>
<td>Global</td>
<td>1</td>
<td>30000</td>
<td>30000</td>
</tr>
<tr>
<td>Preparación de suelo</td>
<td>Ha</td>
<td>1</td>
<td>180000</td>
<td>180000</td>
</tr>
<tr>
<td>Semilla/siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varas larga de 1 metro</td>
<td>Vara</td>
<td>6120</td>
<td>50</td>
<td>306000</td>
</tr>
<tr>
<td>Transporte</td>
<td>Viaje</td>
<td>1</td>
<td>30000</td>
<td>30000</td>
</tr>
<tr>
<td>Preparación de semilla</td>
<td>Jornal</td>
<td>9</td>
<td>6500</td>
<td>58500</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>jornal</td>
<td>5</td>
<td>6500</td>
<td>32500</td>
</tr>
<tr>
<td>Siembra</td>
<td>Jornal</td>
<td>26</td>
<td>6500</td>
<td>169000</td>
</tr>
<tr>
<td>Control de plantas no deseables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación pre-emergente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida</td>
<td>Kg/lt</td>
<td>3</td>
<td>16000</td>
<td>48000</td>
</tr>
<tr>
<td>Aplicación</td>
<td>jornal</td>
<td>2</td>
<td>6500</td>
<td>13000</td>
</tr>
<tr>
<td>Desyerba manual</td>
<td>Jornal</td>
<td>20</td>
<td>6500</td>
<td>130000</td>
</tr>
<tr>
<td>Aplicación pos-emergente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida</td>
<td>Lt</td>
<td>2</td>
<td>17500</td>
<td>35000</td>
</tr>
<tr>
<td>Aplicación</td>
<td>Jornal</td>
<td>2</td>
<td>6500</td>
<td>13000</td>
</tr>
<tr>
<td>Cosecha manual del forraje</td>
<td>Jornal</td>
<td>26</td>
<td>6500</td>
<td>169000</td>
</tr>
<tr>
<td>Asistencia técnica</td>
<td></td>
<td>5</td>
<td>30000</td>
<td>150000</td>
</tr>
<tr>
<td>Imprevisto (5%)</td>
<td></td>
<td></td>
<td></td>
<td>69500</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>1433500</td>
</tr>
</tbody>
</table>
Estructura de costo de la densidad de siembra de 71400 plantas /ha

<table>
<thead>
<tr>
<th>Actividad / descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Costo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Análisis del suelo</td>
<td>Global</td>
<td>1</td>
<td>30000</td>
<td>30000</td>
</tr>
<tr>
<td>Preparación de suelo</td>
<td>Ha</td>
<td>1</td>
<td>180000</td>
<td>180000</td>
</tr>
<tr>
<td>Semilla/siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varas larga de 1 metro</td>
<td>Varas</td>
<td>10200</td>
<td>50</td>
<td>51000</td>
</tr>
<tr>
<td>Transporte</td>
<td>Viaje</td>
<td>1</td>
<td>30000</td>
<td>30000</td>
</tr>
<tr>
<td>Preparación de semilla</td>
<td>Jornal</td>
<td>15</td>
<td>6500</td>
<td>97500</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>jornal</td>
<td>5</td>
<td>6500</td>
<td>32500</td>
</tr>
<tr>
<td>Siembra</td>
<td>Jornal</td>
<td>26</td>
<td>6500</td>
<td>169000</td>
</tr>
<tr>
<td>Control de plantas no deseadas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación pre-emergente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida</td>
<td>Kg/lit</td>
<td>3</td>
<td>16000</td>
<td>48000</td>
</tr>
<tr>
<td>Aplicación</td>
<td>jornal</td>
<td>2</td>
<td>6500</td>
<td>13000</td>
</tr>
<tr>
<td>Desyerba manual</td>
<td>Jornal</td>
<td>20</td>
<td>6500</td>
<td>130000</td>
</tr>
<tr>
<td>Aplicación pos-emergente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida</td>
<td>lit</td>
<td>2</td>
<td>17500</td>
<td>35000</td>
</tr>
<tr>
<td>Aplicación</td>
<td>Jornal</td>
<td>2</td>
<td>6500</td>
<td>13000</td>
</tr>
<tr>
<td>Cosecha manual del forraje</td>
<td>Jornal</td>
<td>26</td>
<td>6500</td>
<td>169000</td>
</tr>
<tr>
<td>Asistencia técnica</td>
<td></td>
<td>5</td>
<td>30000</td>
<td>150000</td>
</tr>
<tr>
<td>Imprevisto (5%)</td>
<td></td>
<td></td>
<td></td>
<td>80350</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>1687350</td>
</tr>
<tr>
<td>Actividad / descripción</td>
<td>Unidad</td>
<td>Cantidad</td>
<td>Costo</td>
<td>Total</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>----------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Análisis del suelo</td>
<td>Global</td>
<td>1</td>
<td>30000</td>
<td>30000</td>
</tr>
<tr>
<td>Preparación de suelo</td>
<td>Ha</td>
<td>1</td>
<td>180000</td>
<td>180000</td>
</tr>
<tr>
<td>Semilla/siembra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varas larga de 1 metro</td>
<td>Vara</td>
<td>14280</td>
<td>50</td>
<td>714000</td>
</tr>
<tr>
<td>Transporte</td>
<td>Viaje</td>
<td>1</td>
<td>30000</td>
<td>30000</td>
</tr>
<tr>
<td>Preparación de semilla</td>
<td>Joral</td>
<td>15</td>
<td>6500</td>
<td>97500</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>Joral</td>
<td>5</td>
<td>6500</td>
<td>32500</td>
</tr>
<tr>
<td>Siembra</td>
<td>Joral</td>
<td>26</td>
<td>6500</td>
<td>169000</td>
</tr>
<tr>
<td>Control de plantas no deseables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación pre-emergente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida</td>
<td>Kg/lt</td>
<td>3</td>
<td>16000</td>
<td>48000</td>
</tr>
<tr>
<td>Aplicación (pos-emergente)</td>
<td>Joral</td>
<td>2</td>
<td>6500</td>
<td>13000</td>
</tr>
<tr>
<td>Desyerba manual</td>
<td>Joral</td>
<td>20</td>
<td>6500</td>
<td>130000</td>
</tr>
<tr>
<td>Control de plantas no deseables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida</td>
<td>Lt</td>
<td>2</td>
<td>17500</td>
<td>35000</td>
</tr>
<tr>
<td>Aplicación</td>
<td>Joral</td>
<td>2</td>
<td>6500</td>
<td>13000</td>
</tr>
<tr>
<td>Cosecha manual del forraje</td>
<td>Joral</td>
<td>26</td>
<td>6500</td>
<td>169000</td>
</tr>
<tr>
<td>Asistencia técnica</td>
<td></td>
<td>5</td>
<td>30000</td>
<td>150000</td>
</tr>
<tr>
<td>Imprevisto (5%)</td>
<td></td>
<td></td>
<td></td>
<td>90550</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>1901550</td>
</tr>
</tbody>
</table>
ANEXO E: RESULTADOS BROMATOLOGICOS REALIZADOS EN EL LABORATORIO DE TURIPANA

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>FECHA</th>
<th>P.C (%)</th>
<th>FDN (%)</th>
<th>FDA (%)</th>
<th>CENIZAS (%)</th>
<th>M.O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3PL/M 90D</td>
<td>31-01-04</td>
<td>21.3</td>
<td>52.98</td>
<td>45.52</td>
<td>5.5</td>
<td>94.5</td>
</tr>
<tr>
<td>7PL/M90D</td>
<td>31-01-04</td>
<td>21.2</td>
<td>62.82</td>
<td>49.90</td>
<td>5.3</td>
<td>94.7</td>
</tr>
<tr>
<td>5PL/M 90D</td>
<td>31-01-04</td>
<td>18.1</td>
<td>57.85</td>
<td>45.63</td>
<td>6.7</td>
<td>93.3</td>
</tr>
<tr>
<td>7PL/M 80D</td>
<td>20-01-04</td>
<td>22.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5PL/M 80D</td>
<td>20-01-04</td>
<td>22.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3PL/M 80D</td>
<td>20-01-04</td>
<td>26.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3PL/M 100D</td>
<td>09-02-04</td>
<td>23.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3PL/M 100D</td>
<td>09-02-04</td>
<td>21.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5PL/M 100D</td>
<td>09-02-04</td>
<td>20.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5PL/M 80D</td>
<td>26-07-04</td>
<td>21.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7PL/M 80D</td>
<td>26-07-04</td>
<td>23.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3PL/M 80D</td>
<td>26-07-04</td>
<td>19.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5PL/M 90D</td>
<td>07-08-04</td>
<td>15.3</td>
<td>40.35</td>
<td>31.13</td>
<td>5.7</td>
<td>94.3</td>
</tr>
<tr>
<td>3PL/M 90D</td>
<td>07-08-04</td>
<td>16.9</td>
<td>44.09</td>
<td>39.84</td>
<td>5.4</td>
<td>94.6</td>
</tr>
<tr>
<td>7PL/M 90D</td>
<td>07-08-04</td>
<td>20.4</td>
<td>40.55</td>
<td>35.10</td>
<td>5.2</td>
<td>94.8</td>
</tr>
<tr>
<td>5PL/M 100D</td>
<td>16-08-04</td>
<td>22.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3PL/M 100D</td>
<td>16-08-04</td>
<td>15.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7PL/M 100D</td>
<td>26-08-04</td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO F. ANÁLISIS DE VARIANZA DE LAS VARIABLES

The GLM Procedure

Dependent Variable: altura (cm) altura

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>19</td>
<td>36941.65403</td>
<td>1944.29758</td>
<td>9.50</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>6958.98972</td>
<td>204.67617</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>53</td>
<td>43900.64375</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **R-Square**: 0.841483
- **Coeff Var**: 23.5367
- **Root MSE**: 14.30651
- **altura Mean**: 60.79167

The GLM Procedure

Dependent Variable: forrajexha (kg/ha) forrajexha

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>19</td>
<td>651897186.8</td>
<td>34310378.3</td>
<td>6.24</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>186947765.8</td>
<td>5498463.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>53</td>
<td>838844952.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **R-Square**: 0.777137
- **Coeff Var**: 42.42328
- **Root MSE**: 2344.880
- **forrajexha Mean**: 5527.343

The GLM Procedure

Dependent Variable: forrajexha (kg/ha) forrajexha

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>epoca</td>
<td>1</td>
<td>48469279.12</td>
<td>48469279.12</td>
<td>8.82</td>
<td>0.0054</td>
</tr>
<tr>
<td>rep(epoca)</td>
<td>2</td>
<td>37693225.70</td>
<td>18846612.85</td>
<td>3.43</td>
<td>0.0440</td>
</tr>
<tr>
<td>edad</td>
<td>2</td>
<td>14074213.11</td>
<td>7037106.56</td>
<td>1.28</td>
<td>0.2911</td>
</tr>
<tr>
<td>epoca*edad</td>
<td>2</td>
<td>1806845.29</td>
<td>903422.65</td>
<td>0.16</td>
<td>0.8492</td>
</tr>
<tr>
<td>densidad</td>
<td>2</td>
<td>488427.28</td>
<td>244243.64</td>
<td>0.04</td>
<td>0.9566</td>
</tr>
<tr>
<td>edad*densidad</td>
<td>4</td>
<td>905119.72</td>
<td>226279.93</td>
<td>0.04</td>
<td>0.9966</td>
</tr>
<tr>
<td>epoca*densidad</td>
<td>2</td>
<td>3280348.65</td>
<td>1640174.33</td>
<td>0.30</td>
<td>0.7440</td>
</tr>
<tr>
<td>epocaedaddensidad</td>
<td>4</td>
<td>975642.55</td>
<td>243910.64</td>
<td>0.04</td>
<td>0.9961</td>
</tr>
</tbody>
</table>
The GLM Procedure

Dependent Variable: mseca (%) mseca

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>19</td>
<td>759.205778</td>
<td>39.958199</td>
<td>2.32</td>
<td>0.0158</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>585.776506</td>
<td>17.228721</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>53</td>
<td>1344.982283</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coeff Var</th>
<th>Root MSE</th>
<th>mseca Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.564473</td>
<td>15.65959</td>
<td>4.150749</td>
<td>26.50611</td>
</tr>
</tbody>
</table>

Source	DF	Type III SS	Mean Square	F Value	Pr > F
epoca | 1 | 305.5323429 | 305.5323429 | 17.73 | 0.0002 |
rep(epoca) | 2 | 80.0566944 | 90.0283472 | 5.23 | 0.0105 |
edad | 2 | 47.8581000 | 73.9290500 | 4.29 | 0.0218 |
epoca*edad | 2 | 62.6340778 | 31.3170389 | 1.82 | 0.1778 |
densidad | 2 | 17.2657333 | 8.6328667 | 0.50 | 0.6103 |
edad*densidad| 4 | 28.1548667 | 7.0387167 | 0.41 | 0.8012 |
epoca*densidad | 2 | 10.6600444 | 5.3300222 | 0.31 | 0.7360 |
epoca*edad*densidad | 4 | 21.5089111 | 5.3772278 | 0.31 | 0.8679 |

The GLM Procedure

Dependent Variable: rela_ho_se (%) rela_ho_se

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>19</td>
<td>2993.712087</td>
<td>157.563794</td>
<td>4.26</td>
<td>0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>1258.531394</td>
<td>37.015629</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>53</td>
<td>4252.243481</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coeff Var</th>
<th>Root MSE</th>
<th>rela_ho_se Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.704031</td>
<td>13.00525</td>
<td>6.084047</td>
<td>46.78148</td>
</tr>
</tbody>
</table>

Source	DF	Type III SS	Mean Square	F Value	Pr > F
epoca | 1 | 396.8083177 | 396.8083177 | 10.72 | 0.0024 |
rep(epoca) | 2 | 179.5892722 | 89.7946361 | 2.43 | 0.1036 |
edad | 2 | 205.3297926 | 102.6648963 | 2.77 | 0.0766 |
epoca*edad | 2 | 142.9009037 | 71.4504519 | 1.93 | 0.1607 |
densidad | 2 | 78.1859148 | 39.0929574 | 1.06 | 0.3589 |
edad*densidad| 4 | 94.0929407 | 23.5232352 | 0.64 | 0.6407 |
epoca*densidad | 2 | 37.6893370 | 18.8446685 | 0.51 | 0.6055 |
epoca*edad*densidad | 4 | 171.7233630 | 42.9308407 | 1.16 | 0.3457 |
The GLM Procedure

Dependent Variable: rela_tallo_se (%)
Charles L. Payne

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>19</td>
<td>3658.459887</td>
<td>192.550520</td>
<td>3.44</td>
<td>0.0008</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>1903.409433</td>
<td>55.982630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>53</td>
<td>5561.869320</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Square 0.657775
Coeff Var 20.30670
Root MSE 7.482154
rela_tallo_se Mean 36.84574

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>epoca</td>
<td>1</td>
<td>140.4708595</td>
<td>140.4708595</td>
<td>2.51</td>
<td>0.1224</td>
</tr>
<tr>
<td>rep(epoca)</td>
<td>2</td>
<td>332.8793000</td>
<td>166.4396500</td>
<td>2.97</td>
<td>0.0646</td>
</tr>
<tr>
<td>edad</td>
<td>2</td>
<td>333.7573370</td>
<td>166.8786685</td>
<td>2.98</td>
<td>0.0641</td>
</tr>
<tr>
<td>epoca*edad</td>
<td>2</td>
<td>479.4904333</td>
<td>239.7452167</td>
<td>4.28</td>
<td>0.0219</td>
</tr>
<tr>
<td>densidad</td>
<td>2</td>
<td>287.5144481</td>
<td>143.7572241</td>
<td>2.57</td>
<td>0.0915</td>
</tr>
<tr>
<td>edad*densidad</td>
<td>4</td>
<td>270.2201852</td>
<td>67.5550463</td>
<td>1.21</td>
<td>0.3259</td>
</tr>
<tr>
<td>epoca*densidad</td>
<td>2</td>
<td>17.4741111</td>
<td>8.7372056</td>
<td>0.16</td>
<td>0.8561</td>
</tr>
<tr>
<td>epocaedaddensidad</td>
<td>4</td>
<td>307.2517556</td>
<td>76.8129389</td>
<td>1.37</td>
<td>0.2642</td>
</tr>
</tbody>
</table>

The GLM Procedure

Dependent Variable: rela_peci_se (%)
Charles L. Payne

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>19</td>
<td>751.580776</td>
<td>39.556883</td>
<td>1.20</td>
<td>0.3106</td>
</tr>
<tr>
<td>Error</td>
<td>34</td>
<td>1117.903306</td>
<td>32.879509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>53</td>
<td>1869.484081</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Square 0.402026
Coeff Var 35.02472
Root MSE 5.734066
rela_peci_se Mean 16.37148

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>epoca</td>
<td>1</td>
<td>65.0844511</td>
<td>65.0844511</td>
<td>1.98</td>
<td>0.1685</td>
</tr>
<tr>
<td>rep(epoca)</td>
<td>2</td>
<td>65.8323611</td>
<td>32.9161806</td>
<td>1.00</td>
<td>0.3780</td>
</tr>
<tr>
<td>edad</td>
<td>2</td>
<td>92.2753037</td>
<td>46.1376519</td>
<td>1.40</td>
<td>0.2597</td>
</tr>
<tr>
<td>epoca*edad</td>
<td>2</td>
<td>107.6153037</td>
<td>53.8076519</td>
<td>1.64</td>
<td>0.2096</td>
</tr>
<tr>
<td>densidad</td>
<td>2</td>
<td>167.0360704</td>
<td>83.5180352</td>
<td>2.54</td>
<td>0.0937</td>
</tr>
<tr>
<td>edad*densidad</td>
<td>4</td>
<td>91.9505407</td>
<td>22.9876352</td>
<td>0.70</td>
<td>0.5979</td>
</tr>
<tr>
<td>epoca*densidad</td>
<td>2</td>
<td>49.9118259</td>
<td>24.9559130</td>
<td>0.76</td>
<td>0.4759</td>
</tr>
<tr>
<td>epocaedaddensidad</td>
<td>4</td>
<td>148.9945630</td>
<td>37.2486407</td>
<td>1.13</td>
<td>0.3575</td>
</tr>
</tbody>
</table>
The GLM Procedure

Dependent Variable: (kg/ha) msecaxha

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sums of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>21</td>
<td>43997530.73</td>
<td>2095120.51</td>
<td>9.96</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>32</td>
<td>6730511.02</td>
<td>210328.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>53</td>
<td>50728041.75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Square: 0.867322 Coeff Var: 33.03342 Root MSE: 458.6158 msecaxha Mean: 1388.339

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type I SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>epoca</td>
<td>1</td>
<td>30543096.92</td>
<td>30543096.92</td>
<td>145.22</td>
<td><.0001</td>
</tr>
<tr>
<td>rep(epoca)</td>
<td>4</td>
<td>11020866.95</td>
<td>2755216.74</td>
<td>13.10</td>
<td><.0001</td>
</tr>
<tr>
<td>edad</td>
<td>2</td>
<td>1521031.70</td>
<td>760515.85</td>
<td>3.62</td>
<td>0.0384</td>
</tr>
<tr>
<td>epoca*edad</td>
<td>2</td>
<td>87420.05</td>
<td>43710.03</td>
<td>0.21</td>
<td>0.8134</td>
</tr>
<tr>
<td>densidad</td>
<td>2</td>
<td>294975.81</td>
<td>147487.91</td>
<td>0.70</td>
<td>0.5034</td>
</tr>
<tr>
<td>epoca*densidad</td>
<td>2</td>
<td>156617.72</td>
<td>78308.86</td>
<td>0.37</td>
<td>0.6921</td>
</tr>
<tr>
<td>edad*densidad</td>
<td>4</td>
<td>197963.14</td>
<td>49490.79</td>
<td>0.24</td>
<td>0.9164</td>
</tr>
<tr>
<td>epocaedaddensidad</td>
<td>4</td>
<td>175558.43</td>
<td>43889.61</td>
<td>0.21</td>
<td>0.9317</td>
</tr>
</tbody>
</table>
Determinación de la altura por época de la yuca de la variedad Mcol 2215 (venezolana), en tres edades de corte y tres densidades.

Cosecha manual del forraje de yuca por época de la variedad Mcol 2215 (venezolana), en tres edades de corte y tres densidades.
Determinación del peso del forraje de yuca por época de la variedad Mcol 2215 (venezolana), en tres edades de corte y tres densidades.

Determinación de materia seca de la yuca por época de la variedad Mcol 2215 (venezolana), en tres edades de corte y tres densidades.
Recolección del forraje de la yuca de la variedad Mcol 2215 (venezolana).

Diferentes edades de corte de la yuca de la variedad Mcol 2215 (venezolana).