ELEMENTOS FUNDAMENTALES SOBRE LABRANZA DE CONSERVACIÓN PARA EL TRÓPICO ECUATORIAL

CARLOS ANDRÉS PÉREZ NAZAR

ELEMENTOS FUNDAMENTALES SOBRE LABRANZA DE CONSERVACIÓN PARA EL TRÓPICO ECUATORIAL

CARLOS ANDRÉS PÉREZ NAZAR

Trabajo de grado en modalidad de Monografía realizado como requisito para optar al título de Ingeniero Agrícola.

Director
ORLANDO NAVARRO MEJÍA
I.A.MSc EN CIENCIAS AGRARIAS
ESP. EN CIENCIAS AMBIENTALES
DOCENTE DE LA FACULTAD DE CIENCIAS AGROPECUARIAS
DEPARTAMENTO DE FITOTECNIA

UNIVERSIDAD DE SUCRE
FACULTAD DE INGENIERİA
DEPARTAMENTO DE INGENIERÍA AGRÍCOLA
SINCELEJO
2006

Nota de aceptación
\qquad
\qquad

Presidente del jurado

Firma del jurado

Firma del jurado

Firma del jurado

DEDICATORIA

\mathcal{A} Dios por darme sabiduría.
\mathcal{A} mis padres \mathfrak{M} anuel y Omaida por todo su amor. \mathcal{A} mis hermanas, por su apoyo incondicional.
A mi novia, Jofiana, por su apoyo y comprensión.

TABLA DE CONTENIDO

INTRODUCCIÓN 9
CAPITULO I

1. LA AGRICULTURA TRADICIONAL DE ALTOS INSUMOS
Y SU RELACIÓN CON LA DEGRADACIÓN Y CONSERVACIÓN
DE LOS SUELOS 10
1.1. Erosión y Degradación 12
1.1.1. Causas y consecuencias 13
1.1.1.1. Causas 13
1.1.1.2. Consecuencias 14
1.1.2. Factores que favorecen la erosión y degradación 15
1.1.3. La erosión en el mundo 17
1.1.4. La erosión en Colombia 20
1.2. CONSERVACIÓN DE SUELOS 23
1.2.1. Beneficios de la conservación de suelos 24
1.2.2. Prácticas culturales de conservación de suelos 24
1.2.3. Prácticas mecánicas de conservación de suelos 28
2. LABRANZA MINIMA Y SIEMBRA DE PRECISIÓN 34
2.1. PRODUCIR, CONSERVANDO SUELO Y AGUA 36
2.1.1. Principios fundamentales de la labranza mínima y siembra de precisión 38
2.1.1.1. Mínimo movimiento de suelo 38
2.1.1.2. Rotación con abonos verdes 40
2.1.1.3. Cobertura permanente 41
2.1.2. Labranza mínima y la siembra de precisión en el mundo 43
2.1.3. Labranza minima y la siembra de precisión en Colombia 44
2.2. EFECTOS DE LA LABRANZA MÍNIMA Y LA SIEMBRA de PRECISIÓN 46
2.2.1. Conservación del suelo 46
2.2.2. Conservación del agua 47
2.2.3. Organismos del suelo 47
2.2.4. Materia orgánica 48
2.2.5. Enfermedades e insectos 48
2.2.6. Medio ambiente 49
2.3. MAQUINAS E IMPLEMENTOS AGRICOLAS PARA LABRANZA MÍNIMA Y SIEMBRA DE PRECISIÓN 50
2.3.1. Equipos para la deposición de coberturas 50
2.3.2. Equipos para manejo de coberturas 53
2.3.3. Equipos de siembra 54
2.4. EL IMPACTO SOCIAL DE LA LABRANZA MİNIMA Y LA SIEMBRA DE PRECISIÓN 59
2.4.1. La agricultura, antes del uso de la maquinaria agrícola 59
2.4.2. La agricultura, con el uso de la maquinaria agrícola 60
2.4.3. La agricultura, con la labranza mínima y la siembra de precisión 61
3. CONCLUSIONES Y RECOMENDACIONES 63
CAPÍTULO II 64
BIBLIOGRAFİA 70
GLOSARIO 73
ANEXOS 78

LISTA DE FIGURAS

FIGURA No 1: Degradación de los suelos por erosión, remoción en masa y sedimentación en Colombia

FIGURA N^{0} 2: Matraca utilizada sobre cobertura para mínimo movimiento de suelo.

FIGURA No 3: Cultivo de leguminosa como abono verde.
FIGURA No 4: Preparación del terreno con cobertura vegetal.
FIGURA No 5: Rollo cuchillo.
FIGURA No 6: Rollo cuchillo operando.
FIGURA No ${ }^{0}$: Desbrozadora picando material vegetal.
FIGURA No 8: Cortamalezas.
FIGURA N ${ }^{\circ}$ 9: Agricultor utilizando la aspersora de espalda.
FIGURA No 10: Modelo de vibrosurcadora multipropósito.
FIGURA No 11: Cincel vibratorio.
FIGURA No 12: Cincel realizando operación.
FIGURA № 13: Agricultor realizando aporque con cobertura.
FIGURA No 14: Modelo de sembradora abonadora.
FIGURA No 15: Matraca para siembra en labranza mínima.
FIGURA No 16: Modelo de sembradora de tracción animal.

LISTA DE ANEXOS

ANEXO 1: Indicadores de la sustentabilidad influenciada por proceso de degradación del suelo.

ANEXO 2: Principios básicos y opciones tecnológicas para mejorar el uso sustentable de recursos del suelo.

ANEXO 3: Interacciones complementarias en sistemas diversificados de cultivo que dan como resultado mejor fertilidad del suelo y protección biológica.

ANEXO 4: Requisitos globales para el desarrollo de una agricultura sustentable.

INTRODUCCIÓN

En la mayoria de los círculos agricolas cientificos se ha llegado a la percepción general a que la agricultura moderna enfrenta una crisis ambiental. La raíz de ésta crisis está en la aplicación de prácticas agricolas intensivas basadas en el uso de altos insumos (agrotóxico) que conllevan a la degradación de los recursos naturales a través de procesos de erosión de suelos, salinización, contaminación con pesticidas, desertificación, pérdida de la biomasa y, por ende, reducciones progresivas de la productividad.

El desarrollo del concepto de agricultura sustentable es una respuesta relativamente reciente a la preocupación por la degradación de los recursos naturales asociada a la agricultura moderna. Este concepto ha provocado mucha discusión y ha promovido la necesidad de realizar ajustes en la agricultura convencional para que ésta se vuelva conservacionista, social y económicamente viable y compatible.

Se pretende con este documento hacer, conocer, recordar o confirmar algunos aspectos técnicos y prácticos a cerca de la siembra de precisión, labranza mínima y sobre agricultura sostenible; tal vez se encuentre alguna terminología desconocida en este, pero se trata que se conozca y se adapte el novedoso sistema de producir sin dañar, de mejorar sin tecnologías costosas no concordantes con las condiciones trópico-ecuatoriales. Tal vez se encuentren ideas o conceptos que parezcan ir en contra de muchos años de cultura e historia, pero la razón de plasmar en este trabajo estos conceptos, es para tratar de contribuir y cambiar ese esquema ideológico de producir comida mediante la preparación convencional y desastrosa que se le esta haciendo actualmente al suelo, y utilizando de manera irracional altos volúmenes de agrotóxicos altamente contaminantes y deteriorantes de la biodiversidad como de la salud humana.

CAPITULO I

1. LA AGRICULTURA TRADICIONAL DE ALTOS INSUMOS Y SU RELACIÓN CON LA DEGRADACIÓN Y CONSERVACIÓN DE LOS SUELOS

Los productores que hacen agricultura tradicional se quejan cada vez más de que sus suelos ya no producen, que invierten más y ganan menos, que aparecen más insectos plagas y enfermedades y su calidad de vida está cada día peor; los técnicos por su lado, buscan subsanarle esta problemática al productor mediante la búsqueda de nuevas variedades de mayor producción, aplicación de nuevos y costosos productos, mayor uso de abonos y fertilizantes industriales solubilizados con ácidos fuertes, manejo de épocas de siembra y otras variables de producción para defenderlos de las enfermedades, insectos plagas y las mal llamadas malezas; pero sin darse cuenta que el problema central de la agricultura tradicional en Colombia y en el mundo es la pérdida de capacidad productiva del suelo o pérdida de fertilidad causada básicamente por dos procesos: La erosión y la disminución de los contenidos de materia orgánica y la microbiota del suelo. (Checua, 2002)

Estos procesos están estrechamente relacionados, provocados y acelerados por el manejo del hombre en la preparación tradicional del suelo, la cual realiza haciendo varias pasadas con diferentes implementos agrícolas de gran importancia para climas templados, pero degradantes en los suelos del Trópico Ecuatorial, al que pertenecen Colombia con solo nueve países más. (Checua, op. cit.)

Con el uso, por muchos años, de implementos inadecuados de labranza (rastras, arados de disco y vertedera) se ha venido destruyendo el suelo;
volviéndose polvo por un lado, compactándose por otro lado afectando los microorganismos mineralizadores de la materia orgánica. Lo primero, forma costras que impiden almacenar lluvias y obstaculizan la germinación de las semillas, lo otro impide con más fuerza el almacenamiento de las aguas lluvias e imposibilita la penetración profunda de las raices de los cultivos en el suelo y disminuye la fertilidad de los mismos.

Las raíces se tuercen horizontalmente para sobrevivir, con pobres resultados en el rendimiento de los cultivos, por la pérdida de nutrientes, baja oxigenación, poca mineralización y disminución de la humedad del suelo. Además, las condiciones naturales de clima y suelo existentes en casi todo el mundo, principalmente bajo condiciones tropicales y subtropicales, no son adecuadas para la preparación del suelo con arado (de manera convencional); en esta práctica, el suelo superficial es removido junto con sus componentes vegetales vivos o muertos, los cuales quedan depositados debajo de la superficie; esto deja el suelo expuesto, a merced del impacto del agua lluvia y del calor de los rayos solares, que en zonas tropicales pueden elevar la temperatura hasta 60 grados centigrados. (RDS, 2003)

Otro problema es la pérdida de materia orgánica de los suelos agrícolas. Al suelo se le ha extraido todo por muchos años sin devolvérsele nada y ahora se encuentran agotados sin materia orgánica. (Celedón, op. cit.)

Una vez perdida la materia orgánica y con ella la población de los microorganismos mineralizadores, no hay nitrógeno y demás elementos esenciales disponibles para las plantas y por lo tanto el rendimiento de los cultivos es bajo; se conocen las consecuencias de un suelo que pierde su materia orgánica: se daña la bioestructura, no retiene agua, se produce compactación, baja la disponibilidad de nutrientes y por lo tanto se degradan totalmente. (Checua, 2002)

1.1. EROSIÓN Y DEGRADACIÓN

La erosión es el conjunto de las acciones que llevan a la desintegración y la demolición de la superficie terrestre. (Celedón, 2000)

Si en un terreno agrícola cae más agua de la que puede absorber éste, se formaran corrientes que producirán erosión laminar, es decir, que arrastran consigo la capa superficial del suelo, si se encuentra descubierto. (IGAC, 1990)

Por lo regular, el suelo más valioso para la agricultura es el arrastrado por las aguas y el viento. El agua lluvia que corre sobre la superficie del suelo agricola, en lugar de ser absorbida totalmente o en buena parte, sirve un buen propósito si es manejada de manera correcta, pero puede causar erosión si no es debidamente controlada. (Alonso y otros, 1977)

Diferentes estudios han mostrado que la mayor parte de la escorrentía de aguas lluvias se produce donde los suelos son pesados, no profundos y húmedos, donde la vegetación es pobre y rala, y donde las lluvias son abundantes e intensas. (Alonso, op. cit.)

Para contrarrestar estos daños se hace necesario reducir la escorrentía de agua lluvia en un terreno agrícola con acciones como:
$>$ Rotación de cultivos
> Protegiendo el suelo con una cobertura de árboles, con pastos y con residuos de cosecha.
> Sembrando en curvas de nivel
> Haciendo terrazas
> Entresurcos con pastos, espaciados con el cultivo
> No voltear el prisma

Para defender el suelo agrícola de la erosión eólica se debe hacer lo siguiente:
> No pulverizar el suelo mediante el arado y rastrillado continuo
> Incorporar materia orgánica al suelo (estiércol, residuos de cosecha) a profundidad no mayor de 15 cm .
> Rotación de cultivos en bandas estrechas
> Plantar barreras de árboles rompevientos
> No dejar los suelos descubiertos

1.1.1. Causas y consecuencias

1.1.1.1. Causas:

La práctica de remover el suelo antes de sembrar es tan universal que el arado ha sido, desde hace siglos, símbolo de la agricultura, pero en los últimos 25 años, cada vez más agricultores del trópico lo están abandonando (FAO, 2000), dado que han comprendido que si es cierto son de gran valor e importancia para condiciones de climas templados, no lo son así para el trópico, convirtiéndose, por el contrario, en degradadores de los suelos y el ambiente en general.

Por una razón simple. El arado de disco, o de vertedera, es una de las principales causas de degradación de los suelos, grave problema que afecta la agricultura hoy en dia. El suelo donde los agricultores siembran sus cultivos, expuestos por la acción del arado mecánico, literalmente se deslava o se lo lleva el viento (FAO, Op. cit.).

Investigadores brasileros descubrieron que la utilización de maquinaria, la constante utilización de arados y rastras y a la misma profundidad en períodos de gran contenido de humedad, creaba capas compactas bajo la superficie. Estas capas reducían drásticamente el índice de filtración del agua, y a la vez incrementaban el escurrimiento en la superficie, la perdida de nutrientes del suelo, la afectación de la microbiota, y con ello, de la bioestructura. (FAO, 2001)

Eliminar la vegetación de la superficie en época de lluvia no solo dejaba el suelo expuesto a las intensas lluvias que lo deterioraban, sino que además desechaba uno de los principales factores de circulación de nutrientes de los suelos. La quema de residuos de las cosechas destruía meso y macrofauna importante, como lombrices e insectos. El monocultivo también contribuia a la degradación del suelo porque no habia otros sistemas de raíces con distintas profundidades de penetración, que contribuyen a ventilar los suelos y fomentan una favorable actividad microbiana. (FAO, Op. cit.)

1.1.1.2. Consecuencias:

La erosión ataca a la rizosfera que constituye el horizonte biodinámicamente activo de la litosfera. Es, en efecto, a su nivel como se realizan en los ecosistemas las últimas etapas del reciclaje de numerosos elementos minerales. Es aquí donde se acumulan los elementos nutritivos, responsable de la fertilidad. (Fournier, 1975)

La desaparición del suelo, muy a menudo ligada a una mala protección vegetal, pero implicando el aclareo y después la desaparición de la vegetación, tiene por efecto evidente la alteración de los ecosistemas. (Mila Prieto, 1996)

No es menos evidente que la erosión afecta a todo ecosistema agrícola en que se manifiesta, afectando principalmente a la fracción fina del suelo, coloides arcillosos y húmicos, afecta también al complejo absorbente; y por tanto, a la riqueza del suelo en elementos fertilizantes. Implica pues un descenso de los rendimientos. (Mila Prieto, Op. cit.)

Las regiones erosionadas "se desertizan". El hombre las abandona, y entonces, se vuelven improductivas y afectan así a la economía general de un país. La erosión del suelo tiene finalmente consecuencias sociales y económicas cuya importancia no debe despreciarse. (Fournier, 1975)

1.1.2. Factores que favorecen la erosión y degradación

Los factores más influyentes en la formación de la erosión de los suelos agrícolas son según Fournier (1.975); Alonso y otros (1.977) y Celedón (2.000):
> El relieve del terreno: la inclinación de la pendiente aumenta la velocidad de la escorrentía y este aumento es suficiente para provocar un aumento de la erosión del suelo.
> La naturaleza del suelo: las condiciones físicas y químicas de los terrenos, al impartirles mayor o menor resistencia a la acción de las aguas, tipifican y singularizan el comportamiento de cada suelo expuesto a condiciones similares de pendientes, lluvia y cubierta vegetal. Los suelos sueltos absorben el agua lluvia conforme va cayendo, por su estructura tienen más poros y mas capacidad de absorción pero como posee baja proporción de partículas arcillosas que actúan ligando las partículas gruesas, al fluir cualquier corriente de agua arrastra grandes cantidades de suelo. Los suelos pesados con espacios porosos muy
pequeños, gran parte de las aguas no penetran en el terreno sino que corre superficialmente, señalando que desde este punto de vista, los suelos más ventajosos son los de textura intermedia.

La estructura del suelo y sus características de estabilidad y cohesión determinan la separación entre el agua que escurre y agua que se infiltra, puesto que regulan la porosidad y la velocidad de infiltración.

La permeabilidad del subsuelo reviste igualmente una gran importancia. Si es "impermeable", el agua se detiene en su descenso; la parte superior del suelo se satura y se facilita por tanto la escorrentía.

La importancia de las escorrentías determinaria la intensidad de la erosión sobre suelos arenosos; mientras que la intensidad de lluvia regularía la erosión de los suelos arcillosos, siendo la desagregación de éstos menor.

- Efectos de la arada y del cultivo (cultivos limpios): la arada y cultivos continuos van destruyendo la estructura del suelo (lo pulverizan) y lo hacen propicio a su destrucción por la erosión por escorrentía o por el viento.
$>$ La vegetación: cuando una gota de lluvia golpea un suelo desnudo, la fuerza del impacto desprende partículas que quedan en suspensión y a medida que el agua se infiltra, se depositan en los espacios porales del suelo, obstruyéndolos y dificultando el paso posterior del agua, lo cual se ve obligada a fluir sobre la superficie del terreno,. En cambio, cuando una gota de lluvia golpea un terreno cubierto con una vegetación densa, se rompe en minúsculas gotitas de agua clara que penetran fácilmente en los innumerables intersticios y canales del suelo.

La cubierta vegetal es la mejor defensa natural de un terreno contra la erosión. Toda planta desde la más minúscula hierba hasta el árbol más corpulento, defiende el suelo de la acción perjudicial de las lluvias, naturalmente en forma y proporción diferente.

Ayres (1936) citado por Alonso (1977), resume la forma como las plantas defienden el suelo en los siguientes puntos:

- Dispersión directa, intercepción por el follaje y evaporación de gotas de agua lluvia, que en esa forma no llegan al terreno.
- Protección directa contra el impacto de las gotas de lluvia.
- Efecto sujetador del sistema radicular sobre las partículas del suelo.
- Penetración de las raíces a través del perfil, los cuales dejan numerosas cavidades tubulares que aumentan la infiltración y mejoran la aireación del suelo.
- Mejoramiento de la estructura del suelo y consiguiente aumento de la infiltración merced al suministro de materia orgánica, y a la formación de la bioestructura
> El hombre: condiciona la erosión del suelo, ya que extrae de éste sus medios de subsistencia. Prácticas culturales inadecuadas conducen en muchas regiones al desgaste tanto más importantes cuanto más susceptible es el medio a la erosión.

1.1.3. La erosión en el mundo

La erosión de los suelos agrícolas en el mundo cada vez es más notoria, debido a la manera como se estaban preparando los terrenos para los cultivos en el trópico, con maquinarias e implementos no concordantes con el trópico. Se creía que la agricultura convencional era la más adecuada, pero
ésta con el pasar del tiempo propició la erosión y la disminución de los contenidos de materia orgánica, lo cual conllevó a la pérdida de la capacidad productiva y pérdida de fertilidad de los suelos cultivables. (Checua, 2002).

A principios de los años ochenta, en Brasil, dos especialistas en suelos presentaron un diagrama sencillo pero elocuente para describir la degradación de las tierras agrícolas de su país. En la etapa 1 la aplicación excesiva de fertilizantes industriales y otros insumos tóxicos mantienen altos niveles de producción, y oculta el gradual deterioro de la estructura del suelo, la pérdida de materia orgánica y la microbiota. En la etapa 2, como el suelo se ha compactado por la utilización excesiva de tractores y arados inadecuados, se acelera el índice de pérdida de nutrientes y la productividad comienza a disminuir. Al llegar a la etapa 3 la erosión ya es tan grave y las cosechas tan reducidas que los campesinos abandonan las tierras. A lo largo del siglo pasado empezaron a utilizar métodos de preparación de tierras de origen europeo, el cual consistía en que después de la cosecha, los residuos de ésta y otra biomasa se arara en el suelo o sencillamente se quemara para eliminar toda vegetación de las tierras, éstas se araban y rastrillaban, así el suelo quedaba suelto y pulverizado para recibir las semillas. Además tendian a producir un solo cultivo. En esos días, afirma un estudio de la FAO que "habia poca información disponible sobre el impacto negativo de esos sistemas de preparación del suelo". Esas repercusiones negativas comenzaron a dejarse sentir cuando una erosión era cada vez mayor y la disminución de las cosechas llamó la atención sobre la gestión de las tierras. (FAO, 2001)

Por otra parte, se calcula que en África subsahariana la pérdida anual media de elementos nutritivos en los suelos es de 24 kilogramos por hectárea y está aumentando. En Asia meridional el costo de las diferentes formas de degradación de las tierras, como la pérdida de estructura y bioestructura de
los suelos que conduce a la erosión, la compactación y la formación de una corteza en la superficie y con ello de la fertilidad (riqueza) de los suelos, se calcula en $\$ 10.000$ millones de dólares EE.UU. anuales. (FAO, 2000)

Todo esto se está dando por una razón simple. La utilización del arado moderno o de vertedera, el cual es una de las principales causas de degradación de los suelos (FAO, Op. cit.). Puesto que, repetimos, no son adecuados para las condiciones tropicales, donde se considera un "crimen" voltear los suelos y dejarlos descubiertos.

Sin embargo, paradójicamente, a la vez que los suelos agrícolas se van agotando, el volumen de la producción debe seguir aumentando. La FAO calcula que los agricultores tendrán que producir 40 por ciento más de grano en el año 2020 para alimentar a la población mundial de ese momento. (FAO, Op. cit.)

1.1.4. La erosión en Colombia

Figura 1. Degradación de los suelos por erosión, remoción en masa y sedimentación en Colombia

Esquema de la distribución porcentual de la intensidad de degradación de los suelos y tierras de Colombia por erosión, remoción en masa y/o sedimentación.(IDEAM, 2.001)

Nombre del indicador: Degradación de los suelos por erosión, remoción en masa y sedimentación en Colombia

Definición: Con base en un estudio de diagnóstico ambiental representativo para la década del 90 sobre la degradación de suelos y tierras (formaciones superficiales y rocas) por erosión, remoción en masa y sedimentación en Colombia (IDEAM, 2000), se puede estimar que un 48% del territorio colombiano en su extensión continental presenta algún grado de degradación por los anteriores procesos, de los cuales el 14.2\% presenta una muy alta degradación, el 10.8\% una alta degradación, el 10.8\% una degradación moderada, el 8.9\% una degradación baja y el 4.6\% una baja degradación. (IDEAM, 2001)

Análisis: Las cuencas que presentan mayores porcentajes de degradación por erosión, remoción en masa y/o sedimentación, en más del 75% de su extensión, son: alta Guajira (99\%), alto Meta (91\%), baja Guajira (97\%), bajo Magdalena (95\%), bajo Meta (89\%). río Atabapo (88\%), río Cesar (96\%), río Sogamoso (89\%), río Tomo-Tuparro (99,9\%), río Vichada $(88,2 \%)$, río Vita (100%) y Sabana de Bogotá (91%).

Los departamentos que presentan una mayor degradación de suelos y tierras por erosión, remoción en masa y/o sedimentación en el territorio colombiano son: Atlántico (100\%), la Guajira (93.8\%), Arauca (87,8\%) y Casanare (94.8\%).

Un análisis de la dinámica de los procesos de degradación de los suelos y tierras por procesos de erosión, remoción en masa y sedimentación en tres décadas 70,80 y 90 puede ser estimado de tres estudios de base. El estudio del INDERENA (1977) que representa la década del 70, el estudio del IGAC (1988) que representa la década del 80 y el estudio del IDEAM (2001) que representa la década del 90. Cabe anotar que la diversidad de criterios, metodologías y los niveles de resolución en cada estudio son diferentes y por lo tanto sus resultados pueden no ser comparables regionalmente pero si constituir unos indicadores globales. Los resultados de estos estudios son resumidos en la tabla siguiente:

TABLA N.1. Estudio de la dinámica de los procesos de degradación de los suelos y tierras por procesos de erosión, remoción en masa y sedimentación en las décadas de los 70,80 y 90 en Colombia.

Estudio	Década representativa	Escala de trabajo	Procesos de degradación	Intensidad de degradación (\%)	
Inderena, 1977	70	1: $1^{\prime} 000.000$	Erosión hídrica Erosión eólica Remoción en masa	.Sin erosión .Erosión hídrica .Remoción en masa .Erosión eólica	24.8 51.4 23.5 0.3
$\begin{aligned} & \text { Igac, } \\ & 1986 \end{aligned}$	80	1: $3^{\prime} 400.000$	Erosión hídrica Erosión eólica Remoción en masa Alcalinización Acidificación Toxicidad Degradación biológica	Sin erosión y otras áreas Muy ligera Ligera Moderada Severa Muy severa	$\begin{aligned} & 50.5 \\ & 1 \\ & \\ & 4.96 \\ & \\ & 23.1 \\ & 1 \\ & 12.9 \\ & 7.9 \\ & 0.73 \end{aligned}$
Ideam, 2001	90	1:500.000	Erosión hídrica Erosión eólica Erosión antrópica Remoción en masa Sedimentación	. Sin degradación .Muy baja Baja .Moderada .Alta .Muy alta	4.6 9.5 8.9 10.8 14.2

De la tabla N. 1 se puede establecer que la diversidad de criterios del estudio del INDERENA no permite establecer comparaciones como
indicador respecto a los otros dos. Del estudio del IGAC, 1988 y el estudio del IDEAM se puede estimar que el cubrimiento de áreas con degradación no ha aumentado sustancialmente, solamente un 1.9%, aunque la intensidad de los procesos ha aumentado notablemente pasando por ejemplo del 0.73% de las áreas con degradación severa a 14.2% a zonas equivalentes con degradación muy alta (IDEAM, 2001).

1.2. CONSERVACIÓN DE SUELOS

Entre las medidas básicas, actualmente en uso, para la conservación del suelo se encuentra la división de los suelos en categorias de capacidad. En este sistema los suelos más llanos y estables se asignan a los cultivos anuales, y otras áreas a las plantas perennes, como las herbáceas y las leguminosas, al pastoreo o a la explotación forestal. Otro método de conservación consiste en incorporar plantas regeneradoras del suelo en la rotación de cultivos. Estas plantas fijan y protegen el suelo durante la fase de crecimiento y, al ser enterradas con el arado, le aportan materia orgánica. Los métodos de cultivo que dejan una cubierta de restos sobre el suelo representan un importante avance en la explotación de éste. En muchas áreas estas técnicas han suplantado el uso del arado de reja, asociado a la práctica del llamado cultivo limpio, que dejaba la superficie del suelo expuesta a todas las fuerzas erosivas naturales. Los métodos especiales para el control de la erosión incluyen el cultivo de contorno, en el que los cultivos siguen los contornos de las pendientes, y se construyen diques y terrazas para minimizar las escorrentías. Otro método de conservación del suelo es el cultivo en franjas, es decir, en bandas alternas de cultivos y tierra en barbecho. Este método es eficaz en el control de la erosión eólica en suelos semiáridos que han de quedar periódicamente en barbecho para ser productivos. Además, el mantenimiento de la fertilidad del suelo a menudo
implica el empleo de fertilizantes inorgánicos (químicos industriales), acondicionamiento del suelo. (RDS, 2003)

1.2.1. Beneficios de la conservación de suelos

La meta de conservación de suelo no es la de proteger los recursos naturales como un fin en si mismo, sino la de asegurar la mejor utilización de ellos de manera que se usen sin despilfarros. En el caso del suelo, que es un recursos natural renovable, su uso racional y prudente llevara al mantenimiento de una agricultura prospera y permanente soportada por un suelo fértil. Es decir, lo que se busca con la aplicación de métodos de conservación es el establecimiento de un nuevo nivel de equilibrio, diferente al natural, en el cual el hombre de hoy y de mañana aprovecha plenamente los dones de la naturaleza. (Suárez, 1982)

También al realizar un plan adecuado de conservación de suelos, los terrenos se tienen que clasificar en clases agrológicas con capacidades de uso similares, los cuales permiten sistematizar la selección de alternativas de uso y manejo para cada sector de la finca. (Suárez, Op. cit.)

Además, si se realiza una sucesión recurrente y más o menos regular de diferentes cultivos en el mismo terreno, esto contribuye de modo eficaz a controlar la erosión y a mantener la productividad de los terrenos.

1.2.2. Prácticas culturales de conservación de suelos

- Distribución de los cultivos: es la distribución adecuada de los cultivos en los terrenos agrícolas. Es la base de todo proceso de conservación. (Alonso y otros, 1977)
- Siembra en contorno: consiste en disponer las hileras de siembra y verificar todas las labores de cultivo en forma transversal a la pendiente, en curvas de nivel o líneas de contorno (Alonso y otros, 1977). Su función es construir un obstáculo que controle el paso del agua de escorrentía, para disminuir así su velocidad y su capacidad de arrastre del suelo.

Presenta las siguientes ventajas:

1. La infiltración del agua en el suelo aumenta y así la cantidad de agua almacenada en el perfil.
2. El agua de escorrentía provoca menos daños, la erosión es menor y se reduce la degradación de la capacidad productiva del suelo.
3. Son prácticas sencillas y de fácil adopción por los agricultores.

La construcción de los surcos en contornos se inicia con un reconocimiento del terreno para verificar el tipo de suelo y la topografía del área, se delinea el surco con la ayuda de un nivel, con una inclinación máxima del 1%, dirigida hacia uno de los costados del terreno. Luego siguiendo la alineación, se abre el surco con un azadón, con yunta o tractor. La distancia entre surcos depende de la pendiente del terreno y el tipo de suelo.

- Cultivos en fajas: consiste en la disposición de los cultivos en fajas de anchura variable, en tal forma que cada año se alternen plantas que ofrecen poca protección al suelo con otras de crecimiento denso. Su función es mantener y aumentar la fertilidad de un terreno, suministrar cubierta vegetal a una proporción substancial del terreno y asegura la presencia permanente de bandas de cultivo denso que obran como barreras vivas. (Mila Prieto,1996)

Además de presentar todas las ventajas de los cultivos en contorno, ofrece protección adicional al terreno por la acción de las fajas de cultivo denso que disminuye la velocidad y el volumen de la escorrentia que llega a las zonas ocupadas con cultivos. (Mila Prieto, Op. cit.)

Se debe tener en cuenta que la siembra en fajas requiere el establecimiento de una rotación de cultivos. Además, deben dejarse siempre vías de drenaje preferiblemente protegidas con vegetación.

- Barreras vivas: son hileras de plantas perennes y de crecimiento denso, sembrados perpendicularmente a la pendiente (curvas de nivel). Las plantas se siembran una cerca de la otra para formar una barrera continua.

Sirven para reducir la velocidad del agua de escorrentía y además actúan como filtros vivos atrapando los sedimentos que lleva el agua que escurre sobre la superficie del suelo. (Anónimo, 2002)

Las barreras vivas impiden que el flujo de agua adquiera una velocidad erosiva, al cortar el largo de la pendiente en pequeñas longitudes.

Hasta el 15\% de pendiente y para suelos profundos, las barreras vivas lograrán detener la degradación del suelo en niveles tolerables, siempre y cuando vayan acompañadas de buenas prácticas agronómicas. (Alonso y otros, 1977)

Las ventajas son las siguientes:

1. Utilización de material vegetativo, lo cual significa producción de biomasa, que según los casos, el agricultor puede aprovechar para forraje, materia orgánica o para otros usos.
2. Costo de establecimiento es bajo, utiliza la mano de obra del agricultor, necesita pocas herramientas.
3. Son de fácil adopción por el agricultor por la sencillez en su establecimiento.
4. El mantenimiento es poco exigente en mano de obra.

Para el establecimiento de la barrera se deben considerar tres pasos:
a. Selección y preparación del material.
b. Preparación de la tierra.
c. Siembra o plantación.

Luego se procede a trazar las líneas guías en contorno, después de haber identificado la pendiente promedio de la parcela y haber definido el espaciamiento entre las barreras.

El trazado se realiza con el cordel, con el nivel de manguera. Las barreras vivas deben sembrarse al inicio de la época de lluvia.

- Rotación de cultivos: se define como la sucesión recurrente y más o menos regular de diferentes cultivos en el mismo terreno. Es una práctica muy antigua, lo cual, utilizada apropiadamente, contribuye en modo eficaz a controlar la erosión y a mantener la productividad de los terrenos. El efecto benéfico de la práctica depende enteramente de la selección que se haga de las plantas que van a rotarse y de la secuencia que se siga en su siembra. En lo posible, los cultivos que se suceden en la rotación deben tener exigencias alimenticias diferentes, no ser susceptibles a los
mismos insectos y enfermedades y ofrecer grados diferentes de protección del suelo. (Anónimo, 2002)

La rotación de cosechas permite, asimismo, que se haga una mejor utilización de los abonos y fertilizantes; estando el terreno ocupado la mayor parte del año con plantas de distintas exigencias alimenticias, se evita que se pierda por lavado y percolación parte de las sales que se apliquen. (IGAC, 1990)

1.2.3. Prácticas mecánicas de conservación de suelos

- Canales de desviación: las prácticas usuales de conservación de suelos, tales como el cultivo en contorno, la siembra en fajas, las rotaciones, las terrazas, etc., no pueden aplicarse con éxito en un terreno bajo cultivo si la escorrentía de áreas colocadas en su nivel más alto está contribuyendo el proceso erosivo en tales terrenos. El problema se reduce mucho si cada terreno soporta tan solo la acción del agua de lluvia que le cae directamente. Para lograr esto se recurre a la construcción de canales de desviación, los cuales cortan el flujo desagua de escorrentia de predios más altos y llevan esas aguas a un desagüe bien protegido, impidiendo que cause daños en áreas vecinas más bajas. A los canales de desviación se les da generalmente una sección trapecial y hay necesidad de calcularlos y diseñarlos individualmente para las condiciones en que van a trabajar. Estas estructuras son más efectivas cuando sirven áreas que estén cubiertas de bosque o pasto, pues con tales condiciones no ocurren sedimentaciones grandes de suelo en el canal, las cuales son la causa más frecuente de fracaso. (Anónimo, 2002)
- Terrazas: desde hace varios siglos los agricultores han recurrido a la construcción de canales, distribuidos a intervalos en el terreno, para
cortar la escorrentía. En esta forma se evita que las aguas adquieran velocidad y volumen suficiente para arrastrar particulas de suelo. Un tipo de canales que cumple esta finalidad son las llamadas terrazas, las cuales se distinguen por tener una superficie transversal de gran anchura y poca profundidad la cual permite que al mismo canal se siembre y cultive en forma similar al resto del terreno. Desde el punto de vista de la construcción se distinguen las terrazas de canal y las terrazas de caballón, con la primera se logra interceptar y transportar el agua de escorrentia eficientemente; con la segunda se logra mantener el agua de escorrentia sobre el terreno durante algún tiempo, para así incrementar su absorción por el suelo.

Por la forma como actúan se distinguen dos tipos: la de absorción y las de desagüe. Las primeras se usan en zonas secas, donde la prioridad es conservar el agua; la segunda se usa en zonas húmedas con períodos de Iluvia muy prolongados. (IGAC, 1990)

El espaciamiento de las terrazas entre ellas depende de la pendiente del terreno, de las condiciones del suelo y del cultivo que en él se establezca. Los espaciamientos mayores deben usarse en suelos permeables ricos en materia orgánica, en zonas con lluvias de baja intensidad. Las terrazas deben servir de guía para todas las labores culturales.

- Terrazas de banco: son los terraplenes o mesas resultado del corte longitudinal de la pendiente de un terreno a través de la remoción de la tierra para su formación.

Los terraplenes tienen un desnivel lateral del 5\% (hacia el talud superior) y un desnivel longitudinal (hacia el desagüe) que puede ser hasta del 1%.

Actualmente su uso se halla limitado a regiones con gran densidad de población y con escasos terrenos planos en donde se justifique la inversión de grandes cantidades de trabajo para formar escalones. Las terrazas de bancos se adoptan a terrenos con pendientes superiores al 20%. (IGAC, 1990)

- Terrazas individuales: consiste en un pequeño terraplén circular u ovalado que se construye alrededor de cada árbol con una inclinación del 5% al 10% contraria a la dirección de la pendiente del terreno. Se ha utilizado especialmente en terrenos con pendientes entre el 10\% y el 50%. Además de su acción antierosiva, permite un mejor aprovechamiento de los fertilizantes y el agua en terrenos con pendientes elevadas. (Anónimo, 2002)

Cada terraza individual constituye un obstáculo que reduce la velocidad del agua de escorrentía causando la sedimentación del suelo que ésta lleva en suspensión permitiendo una mayor infiltración del agua en la zona donde crecen las raices de los árboles.

Presenta algunas desventajas:

El costo de su construcción es alto, al establecerlos, se limita artificialmente a la zona de crecimiento de raíces de los árboles y si la terraza tiene un diámetro reducido, esto se refleja en desfavorables condiciones para el normal desarrollo de la planta, no se aconseja en terrenos con un primer horizonte de espesor menor a 30 centímetros. (Mila Prieto, 1996)

- Terrazas de formación lenta: es una práctica mecánica que sirve para detener el arrastre de los suelos, guardar la humedad y aprovechar mejor la tierra.

La terraza se va formando en un período de tres a cinco años. La distancia entre las terrazas varia de acuerdo al grado de la pendiente, el tipo de suelo, cantidad de precipitaciones y clase de cultivos.

Para su construcción se debe hacer:

1. Verificación de la topografia del terreno.
2. En la mayor pendiente se empieza el trazado.
3. Se inicia la construcción de las zanjas utilizando herramientas como la pala, pica y azadón. La tierra que se obtiene de la excavación de debe colocar en la parte superior para formar un camellón de 30 a 40 centímetros de alto.

Presenta las siguientes ventajas:

1. Control de la erosión y mantenimiento de la fertilidad del suelo.
2. Retención de la humedad.
3. formación de una terraza de banco con el tiempo, sin utilización de mucha mano de obra.
4. Debido a la facilidad para realizar el trabajo se logra proteger una mayor extensión de terreno.
5. Se optimiza el uso del agua.
6. Aumenta la producción.

- Zanjas de infiltración: la finalidad es retener el agua de escorrentía que proviene de las partes altas del terreno, para que rompa la velocidad del agua, de tal manera que se capte y acumule en la zanja, para que sirva de reserva a los árboles y cultivos.

Las zanjas con gradiente del 1\%, sirven para retirar el exceso de agua, y se le conoce con el nombre de zanja de desviación. Esta zanja se recomienda para muchos suelos pesados y arcillosos. Las zanjas sin gradiente (0%) sirven para infiltrar el agua. Se recomienda construirla en suelos francos arcillosos.

Se construye la zanja en la parte más alta del terreno y/o en el centro del terreno. Se debe tomar en cuenta la cantidad de precipitación en la zona. (Primavesi, 1999)

- Acequias de laderas: son estructuras mecánicas utilizadas especialmente en regiones de mucha lluvia y en terrenos con pendiente entre el 10% y 30%, en los cuales no es factible construir terrazas de base ancha. Consiste en canales de 30 centímetros de ancho en el fondo, con taludes de 1:1 y de profundidad y desnivel variable los cuales se construyen a distancias regulares, de acuerdo con la pendiente y con el uso del terreno. Son aconsejables en zonas con lluvias intensas y en áreas con suelos pesados, poco permeables. Al dividir la longitud de la pendiente en tramos cortan la escorrentía antes de que la misma adquiera velocidades perjudiciales y sacan lentamente de los terrenos los excesos de agua llevándolas a desagües bien protegidas. Los canales así dispuestos van subdividiendo el volumen total de la escorrentía en porciones pequeñas fáciles de manejar.

El distanciamiento entre acequias varía con la pendiente del terreno y en la clase de cultivo que en éste se tenga. La separación disminuye en terrenos con pendientes y ocupados con cultivos como maíz, yuca, tabaco, los cuales ofrecen muy escasa protección al suelo.

2. LABRANZA MÍNIMA Y SIEMBRA DE PRECISIÓN

Abstract

La labranza mínima y la siembra de precisión han revolucionado el concepto sobre los sistemas de labranza hasta ahora conocidos.

Abstract

La preparación del suelo era tradicionalmente usada para controlar biomasa indeseable, dar aireación al suelo, incorporar residuos vegetales, etc. Durante siglos existió la convicción que la preparación del suelo era necesaria para obtener un desarrollo óptimo de las plantas, sin darnos cuenta que como se hacía, utilizando maquinarias e implementos propios para lugares con estaciones (climas templados), por el contrario, se compactaron los suelos, se afectó la microbiota, la estructura, la macroporosidad, degradándose por completo los suelos.

En años recientes, al conocerse los perjuicios causados por el laboreo continuo del suelo, se ha producido un gran interés hacia las técnicas de labranza mínima o de siembra de precisión. (Celedón, 2000)

Según Theodor Friedrich (año 2000), ingeniero agrónomo superior de la FAO "el concepto de labranza mínima y siembra de precisión, procede directamente del reconocimiento que la labranza mecánica está contribuyendo a la degradación de los suelos en proporción masiva, sobre todo en los paises tropicales y subtropicales". (FAO, 2000)

Por definición, labranza mínima es el mínimo laboreo indispensable para lograr una correcta implantación del cultivo. Mientras siembra de precisión es sembrar directamente sin remover el suelo. (Studdert, 2002)

Para la práctica de la labranza mínima se limita una estrecha franja de entre 10 y 50 centímetros la superficie que se remueve durante la preparación de
las tierras. La siembra de precisión se realiza con una variedad de aparatos, de motor o de tracción animal, muchos de ellos fabricados localmente. La siembra de precisión ha llegado a ser considerada como un sistema y no sólo como un método de preparación de tierra. Para que el sistema sea exitoso es necesario introducir rotaciones de cultivos, por ejemplo, el uso dentro del área de una secuencia de diferentes especies en el tiempo y en el espacio. La rotación de cultivos es la base para la sostenibilidad de los sistemas de siembra directa.

La labranza mínima y siembra de precisión pueden proporcionar las siguientes ventajas:

1. Mantienen la estructura física y la bioestructura del suelo.
2. Permiten la acumulación de materia orgánica en la superficie.
3. Controlan la erosión causada por agua o viento.
4. Reducen la incidencia de ciertas enfermedades.
5. Reducen los costos de operación del cultivo.
6. La producción es más estable, particularmente en los años secos, al mejorar la infiltración del agua.
7. Se elevan las ganancias
8. Reducen la emisión de dióxido de carbono.

La labranza mínima y siembra de precisión también tienen algunas desventajas. Por ejemplo la liberación del nitrógeno por parte del suelo es menor, ya que no hay una ruptura tan intensa de los agregados, ni una exposición al aire de la materia orgánica tan marcada, con lo que se ve reducida la tasa de mineralización de nitrógeno reservado en el suelo.

Por otro lado, el hecho que los rastrojos no estén completamente incorporados en el suelo hace que las tasas de su descomposición sean más
bajas y que el efecto de inmovilización del nitrógeno se mantenga con una relativamente elevada magnitud por más tiempo.

También hay que tener en cuenta que el uso continuado de la siembra de precisión puede provocar algunos problemas de compactación. Al transitar sobre el suelo con las máquinas que se utilicen, desde la pulverizadora, pasando por la sembradora y la abonadora y hasta la cosechadora y el suelo al no ser removido o serlo con menor intensidad, se puede generar una densificación de éste.

No obstante, hay que decir que éste fenómeno todavía no se ha producido con intensidad preocupante en nuestros suelos. (Hernández, 2002)

La labranza mínima y la siembra de precisión protegen al suelo contra la erosión y dan un mejoramiento de su materia orgánica. Esto hace que este tipo de preparación del suelo deba ser tenida en cuenta siempre. La prioridad debe ser proteger al suelo y con esta labranza esto se logra sin demasiados esfuerzos.

2.1. PRODUCIR, CONSERVANDO SUELO Y AGUA

La erosión hídrica, que es la pérdida de suelo superficial fértil por la acción del agua lluvia, es la principal responsable de la degradación progresiva de los suelos. Esta erosión, es causada por el escurrimiento superficial del agua que no se infiltra; si se logra minimizar la escorrentía, se puede aumentar la infiltración durante las lluvias y, con ello, disminuir o anular el riesgo de la erosión. El otro gran responsable de la degradación es el desequilibrio del balance nutricional: extraer, más que reponer. (RDS, 2003)

El sistema para lograr la infiltración de las aguas y el mantenimiento del equilibrio nutricional lo permite la vegetación natural: cobertura permanente del suelo y reposición de nutrientes a través de los vegetales o sus restos. Las tecnologías de cualquier sistema sostenible del uso del suelo tienen que apuntar hacia esos principios.

Los nativos de nuestras tierras sabían cómo cultivar los suelos; guiados por la misma vegetación natural, abundante en esa época, interferían muy poco con el maravilloso equilibrio entre dar y recibir, o extraer y reponer. Todavia existen algunos ejemplos de prácticas conservacionistas de aquel entonces en el país, como el caso del "guachado", en el cultivo de la papa, que aún se usa ampliamente en el departamento de Nariño. Esta práctica mantiene una cobertura mayor que en los sistemas convencionales, evitando la erosión, incluso en ladera con pendiente fuerte. (RDS, 2003)

Hoy día, es necesario desarrollar sistemas de manejo de la tierra que sigan los principios de la vegetación natural, es decir, que permitan conservar el suelo y el agua y, a la vez, mantener una producción sostenible; además, que ofrezcan un atractivo económico inmediato a los productores, como mayor rendimiento, menor trabajo y menor costo.

Actualmente, estos sistemas se conocen como labranza mínima en la región andina de Colombia, aunque en otros paises, con algunas variaciones, se denominan siembra directa o labranza cero.

2.1.1. Principios fundamentales de la labranza mínima y siembra de precisión

La labranza mínima y la siembra de precisión presentan tres principios, los cuales son base para la preparación de éstas. A continuación se mencionarán:

2.1.1.1. Mínimo movimiento de suelo

Como se ha mencionado, el movimiento del suelo mediante los arados, rastrillos o azadones rotativos, desencadena todo el proceso que causa degradación del suelo, pérdida de la estructura, compactación, erosión hídrica, escape del carbono hacia la atmósfera, pérdida de humedad, nutrientes y materia orgánica, aumento de la temperatura.

La preparación del suelo no es necesaria para la producción vegetal, lo muestran así las selvas, la vegetación en fincas, los pastizales, los rastrojos.

Ahí está la verdadera revolución tecnológica del siglo XXI: el suelo no se debe preparar como tradicionalmente se hacia, no se debe EXPLOTAR.

Para el caso de la siembra de precisión, la semilla se coloca en el sitio donde se desea la planta y se efectúa un movimiento mínimo del suelo, de modo que la semilla queda tapada con tierra suficiente que le permita su germinación y anclaje inicial; para el efecto existen herramientas adecuadas como la matraca, palín o chuzo o máquinas especializadas. (Birbaumer, 2000). Ver figura $\mathrm{N}^{\circ} 2$.

Figura 2. Matraca utilizada sobre cobertura para mínimo movimiento de suelo.

Fuente: www.falc $1960 . c o m / e s / p r o d o t t i / t r i n c i a . h t m l ~$

En la labranza mínima solamente se abre el surco en donde se colocarán las semillas, el abono y los correctivos, si es necesario, sin mover o preparar el suelo en las calles.

Adicional a todas las ventajas de no mover el suelo, están: no exponerlo directamente a la lluvia, sol y viento, mejorar la infiltración, no dañar la estructura ni interrumpir los drenajes naturales, evitar la pérdida de abono y la rápida mineralización de la materia orgánica. Existe un atractivo especial
para los agricultores y es el ahorro de un 20\% de mano de obra y del 30\% en maquinaria. (Birbaumer, 2000)

2.1.1.2. Rotación con abonos verdes

El concepto de abonos verdes cambia sustancialmente: se definia como un cultivo, preferiblemente leguminosa, que se incorporaba al suelo con arado antes de su etapa reproductiva -floración- para mejorar la nutrición y algunas caracteristicas fisico-químicas del mismo. Hoy en dia, en la labranza mínima el abono verde no necesariamente tiene que ser una leguminosa, puede ser una gramínea, crucifera, etc. Y no se incorpora por ningún motivo, sino se tumba o depone en un estado fenológico adecuado, bien sea floración, grano lechoso u otro, de manera que queda dispuesto sobre el suelo a manera de cobertura. (Checua, 2002). Ver figura № 3.

Figura 3. Cultivo de leguminosa como abono verde

Fuente: www.rds.org.co

Los abonos verdes presentan numerosas ventajas a corto, mediano y largo plazo, como son: brindan cobertura al suelo favoreciendo la infiltración, evitando la escorrentía, se regula la temperatura del suelo y disminuye la evaporación.

Las raíces de los abonos verdes actúan como drenajes naturales y además como amarre del suelo, evitan la lixiviación de nutrientes y en algunos casos, como las cruciferas recuperan nutrientes fijados en horizontes más profundos del suelo. Los abonos verdes inhiben el crecimiento de la biomasa indeseable por varias razones: efecto alelopático, competencia por espacio y luz, cobertura del suelo en alto porcentaje. También enriquecen el suelo con materia orgánica y aumentan el intercambio catiónico. (Birbaumer, 2000)

La selección de los abonos verdes es fundamental para rotarlos adecuadamente con el cultivo posterior; así mismo se deben rotar dentro del lote, de tal forma que no se conviertan en monocultivos.

2.1.1.3. Cobertura permanente

Un suelo cubierto mantiene y estabiliza la temperatura, evitando calentamientos o enfriamientos excesivos, creando el hábitat propicio para la actividad biológica. Esta cobertura, al igual que en un bosque nativo, recibe la lluvia y la infiltra lentamente, evitando el arrastre de partículas sólidas y en suspensión, también evita la pérdida de humedad por evaporación, asegurando una buena cosecha del cultivo implantado sobre ella. (Rosas Roa, 2002). Ver figura ${ }^{\circ} 4$.

Figura 4. Preparación del terreno con cobertura vegetal

Fuente: Checua 2002

De la misma manera la cobertura hace que las propiedades físicas y biológicas se mantengan o se mejoren a través del tiempo; ésta se descompone suministrando materia orgánica barata -in situ- y sin costos de transporte o mano de obra, sin contaminantes y de muy buena calidad.

Cuando un cultivo está cubierto por biomasa indeseable, la competencia entre éstos no existe a nivel del suelo, pues no hay competencia por nutrientes ni por agua. La única competencia es por la luz del sol.

Cuando esa competencia por el sol comienza, el agricultor simplemente guadaña surcos alternos de la biomasa indeseable. La calle de biomasa indeseable que quedó sin guadañar es el comedor de todos los insectos y bichos de la finca. Estos insectos y microorganismos se alimentan de las plantas nativas, que son la comida natural que les gusta y no los cultivos. En cambio, en la agricultura sin cobertura, los insectos y microorganismos se ven obligados a comer de los cultivos, que no es su alimento natural (Parisi, 1979)

2.1.2. Labranza mínima y la siembra de precisión en el mundo

Al inicio del milenio la agricultura de conservación se práctica en unos 45 millones de hectáreas, sobre todo en América del Norte y del Sur. En particular en América del Sur, todos los pequeños propietarios como los grandes agricultores están adoptando aceleradamente esta tecnología. En algunos estados de Brasil es una política oficial. En Centroamérica, Costa Rica, tiene una dirección de agricultura de conservación en su Ministerio de Agricultura. (Studdert, 2002)

Las cifras disponibles demuestran que la agricultura sin labranza se utiliza en el 52\% de las tierras agrícolas del Paraguay, en el 32\% de las de Argentina y en el 21% de las de Brasil.

Si bien en términos absolutos la superficie más extensa que no aplica la labranza está en los Estados Unidos, corresponde apenas a poco más del 16% de la superficie cultivada de ese país.

Los agricultores latinoamericanos que practican la labranza mínima y siembra de precisión están muy organizados en asociaciones regionales, nacionales y locales y reciben apoyo de instituciones de América del Norte y del Sur, apoyo fundamental para permitirles adoptar una nueva tecnología que supone un cambio radical del planteamiento de su trabajo de toda la vida.

Fuera del continente Americano, la agricultura de conservación se ha adoptado más lentamente.

Actualmente algunas grandes granjas de Sudáfrica y Zimbabwe están utilizando la agricultura de conservación y en Sudáfrica se han formado
grupos de agricultores que no labran sus tierras, como los de América del Sur. En Camerún, Ghana, Kenya, Malawi, Namibia, Tanzania, Uganda, Zambia, entre otros paises, están en marcha iniciativas para promover la agricultura de conservación entre los pequeños campesinos. (FAO, 2.000)

Otra amplia zona donde sería en extremo benéfica la adopción de la labranza de conservación en Asia central. En los paises que antes pertenecieron a la U.R.S.S. es virtualmente imposible la agricultura convencional debido a problemas ambientales como la erosión y por la falta de maquinaria agricola que necesita remplazarse. A menos que se adopte la agricultura de conservación, la inversión en nueva maquinaria tendrá que ser muy elevada.

2.1.3. Labranza mínima y la siembra de precisión en Colombia

En Colombia, la labranza mínima y la siembra de precisión se utilizan frecuentemente en la Región Andina. Y más exactamente en los departamentos de Nariño y Boyacá. En el contexto andino colombiano, el término labranza mínima es utilizado para prácticas de mínimo movimiento del suelo en el momento de la siembra y durante el ciclo vegetativo (en el caso de la papa), así como poco o ningún movimiento del suelo con ocasión de la siembra y ningún movimiento del suelo durante el ciclo vegetativo (en arveja, maíz y frijol).

En esta zona, en el cultivo de papa, por ejemplo, se abre un surco de 20 a 30 cm . de ancho sobre una cobertura vegetal viva o muerta para la fertilización y la siembra, dejando una faja de tierra descubierta en el lugar de la semilla (que es un tubérculo). En el caso de la arveja, el maiz y el frijol, la semilla se deposita con máquinas especiales, abriendo el surco únicamente en el lugar de la siembra (aproximadamente 2 cm .).

En nuestro país, se están desarrollando con muy buenos resultados proyectos e investigaciones en lo que tiene que ver con labranza mínima y siembra de precisión. Como es el caso del Proyecto Checua que en vez de tener como punto de partida la investigación científica realizada por instituciones estatales de investigación agraria, tuvo que adquirir su conocimiento y experiencia a través del método aprender-haciendo, en el cual se cuenta con la participación permanente de los productores agrícolas y los fabricantes artesanos de maquinaria. (RDS, 2003)

Por la experiencia adquirida en Colombia y en otros países de América Latina, se puede concluir que los requerimientos básicos para que se pueda dar la adopción de la labranza mínima y la siembra directa son cuatro:

Requerimiento agroecológico: Las mejores condiciones para la utilización de la labranza mínima y la siembra directa se dan en regiones que permiten producir dos cosechas por año; esto implica la necesidad de un régimen pluviométrico mayor o igual a 700 mm anuales para el altiplano andino, y 1000 mm y más para las zonas de menor altitud, preferiblemente de distribución bimodal.

Requerimiento socioeconómico y cultural: Para los países andinos la labranza mínima y la siembra directa son prácticas nuevas, aunque fueron usadas varios siglos atrás por sus antiguos pobladores; actualmente, estos sistemas requieren implementos agrícolas no tradicionales, como sembradoras especificas, escarificadoras, rollo cuchillo y agroquímicos apropiados, al igual que rotación con abonos verdes.

Requerimiento institucional: Por demandar implementos e insumos agrícolas no tradicionales, así como conocimientos y prácticas nuevas, la
introducción de la labranza mínima y la siembra directa requiere de instituciones y mercados que suministren estos componentes al usuario.

El atractivo para el usuario: Para que la adopción de una tecnología sea posible, tiene que haber, por un lado, una problemática y una necesidad sentida por resolverla. y. por otro, la tecnología apropiada para darle solución. Entre más atractiva y apropiada se presente tal solución para el usuario potencial, más rápido se dará su adopción.

Algunas investigaciones son: 12 sistemas para esta área que se encuentran entre los 2600 y 3200 mts. sobre el nivel del mar, se tiene papa sobre labranza mínima, donde hay un abono verde. De igual manera se tienen parcelas demostrativas desarrolladas conjuntamente con la población donde en la mitad se trabaja convencionalmente y en la otra mitad con labranza mínima para que el campesino vea los resultados tangibles y medibles con el sistema.
(http://bases.colnodo.org.co/reloc/index.html)

2.2. EFECTOS DE LA LABRANZA MÍNIMA Y LA SIEMBRA DE PRECISIÓN

2.2.1. Conservación del suelo: la cobertura permanente del suelo impide la erosión por vientos y lluvias, el colchón retiene la humedad e impide que el sol la evapore. Las potentes raíces de muchas plantas nativas son potentes cinceles que penetran los suelos y mejoran su estructura, entonces el suelo almacena más agua y guarda oxigeno que le es necesario.

El suelo queda blando, sin compactación, tiene la estructura rica, abundante agua y oxígeno, soportando cambios climáticos drásticos. (Rosas Roa, 2002)
2.2.2. Conservación del agua: la cubierta vegetal que se implanta sobre el suelo al aplicar la labranza mínima o la siembra de precisión actúa como un escudo contra el calor del sol; el sol no puede evaporar ni una gota de agua del suelo porque está protegido por el colchón exuberante de cubierta vegetal. Los agricultores que usan esta tecnologia han reducido el riego de los cultivos en un número considerable. No necesitan hacerlo por la excelente conservación de humedad que logra mantenerse en el suelo, gracias al manto. (Rosas Roa, 2002)
2.2.3. Organismos del suelo: ya se entiende que no todos son dañinos y que exterminarlos no es solución a los problemas que puedan causar al cultivo; se debe tratar de tener poblaciones de dañinos y benéficos en equilibrio para evitar el daño económico y lograr sanidad y producción. Juegan un papel importantísimo en el reciclaje de nutrientes que entran y salen del suelo. Son muy conocidas sus relaciones simbióticas, la fijación de Nitrógeno por bacterias y los hongos micorrizas que ayudan a entrar nutrientes del suelo. (FAO, 2000)

Cuando se deja cobertura en el suelo, todo el colchón de materia orgánica es transformado rápidamente por los microorganismos en humus, ahorrando la fertilización agroquímica. Las plantas no pueden tomar Nitrógeno del aire por sí solas, para ello necesitan de la ayuda de las bacterias. Al aplicar la labranza de conservación, en el colchón de hojarasca que se suministra al suelo, abundan millones de bacterias que todos los días, a cada hora, minuto y segundo, están bajando Nitrógeno del aire para abonar sus cultivos y sin ningún costo. Al aplicar leguminosas como abono verde al cultivo, en las raíces de éstas viven otras bacterias que bajan más Nitrógeno del aire para los cultivos. (Rosas Roa, 2002)
2.2.4. Materia orgánica: la cobertura hace que las propiedades fisicas y biológicas se mantengan o se mejoren a través del tiempo; estas se descomponen suministrando materia orgánica barata "in situ" y sin costo de transporte o mano de obra, sin contaminantes y de muy buena calidad. (Checua, 2000)

Al implantar abonos verdes en los terrenos agricolas, las raíces de estas plantas son la fuente más importante de materia orgánica con la ventaja de que por su crecimiento subterráneo hacen posible la acumulación de materia orgánica a profundidades variables. Esto hace que el suelo mantenga una buena estructura y una mayor capacidad de retención de agua.

El aumento en actividad de los microorganismos originado en la incorporación de material orgánico acelera mucho el proceso de meteorización de los minerales y así las cosechas pueden luego disponer de las cantidades de nutrientes que necesitan. (Hernández, 2002)
2.2.5. Enfermedades e insectos: las enfermedades e insectos se ven reducidas con éste sistema ya que los cultivos estarán excelentemente nutridos desde su infancia, por la abundante cantidad de nutrientes aportados por la cobertura permanente sobre el suelo, el sol, el nitrógeno del aire, lombrices, insectos útiles, bacterias, hongos, micorrizas, entre otros microorganismos que no se ven, pero que en un suelo vivo, son básicos para la buena nutrición de las plantas. Entonces las plantas bien nutridas son resistentes a insectos y enfermedades. (Rosas Roa, 2002)

La lucha integral contra los insectos es fundamental en la agricultura de conservación porque contribuye a la formación de biota y favorece a la agricultura biológica.

Las técnicas de la lucha integral contra los insectos permiten a los agricultores supervisar y combatir la presencia de insectos en los campos, sin alterar el equilibrio natural, y recurrir a plaguicidas sintéticos solo en el momento y lugar absolutamente necesario.

Además, la población de insectos y enfermedades también se mantienen bajo "control" mediante la rotación de cultivos y fundamentalmente con una nutrición balanceada (principio de la TROFOBIOSIS).
2.2.6. Medio ambiente: este método de cultivo protege la biodiversidad mediante el respeto del equilibrio natural del campo. La labranza mínima puede contribuir a reducir los niveles de los gases que producen el efecto "invernadero" causante del cambio climático: los suelos en los que se aplican los sistemas de siembra de precisión emiten hasta 8 veces menos bióxido de carbono que las que se aran. (Cuellar Gálvez, 2000)

También según la misma fuente, se produce considerables beneficios mundiales como son:

1. Retención del carbono en la materia orgánica acumulada en los suelos a partir de los residuos agrícolas y la cubierta previa; las posibilidades mundiales de la agricultura de conservación en materia de fijación de carbono podría equivaler al incremento producido por el hombre de bióxido de carbono en la atmósfera.
2. Menor lixiviación de nutrientes y sustancias químicas del suelo en los mantos freáticos.
3. Menos contaminación del agua.
4. Ausencia práctica de erosión del suelo (la erosión es inferior al aumento de los suelos).
5. Reabasto de los acuíferos gracias a la mejor infiltración.
6. Menor utilización de combustible en la agricultura.

2.3. MAQUINAS E IMPLEMENTOS AGRíCOLAS PARA LABRANZA mínima y Siembra de precisión

Una labranza adecuada del suelo tiene por objeto mantener y mejorar sus propiedades físicas y químicas brindando a las plantas condiciones optimas para su desarrollo.

Para lograr este objetivo es necesaria la introducción y/o modificación de herramientas agrícolas, que nos permitan la realización de las labores necesarias para la siembra de los cultivos, manteniendo la cobertura vegetal en la superficie, sin invertir el suelo o dejarlo expuesto. Las diferentes herramientas utilizadas para la siembra de precisión y labranza mínima se encuentran agrupadas según su función en:

- Implementos para la deposición y manejo de coberturas
- Implementos para la siembra y mantenimiento de cultivos

2.3.1. EQUIPOS PARA LA DEPOSICIÓN DE COBERTURAS

Rollo cuchillo: consta de un cuerpo cilíndrico hueco sellado que gira sobre un eje central y en cuya parte externa se encuentran cuchillas alineadas a lo largo del cilindro. Se cuenta con modelos de tracción motorizada y animal. El implemento para tractor consta de una estructura montada sobre un marco, que tiene la torre de unión a los tres puntos de enganche en el tractor, su ancho de corte es de 2,3 M. El rollo de bueyes, de 1,0 M de ancho de corte, está montado para su transporte sobre dos ruedas y una barra de tiro para ser

> acoplado al enganche de un vehículo y un timón para yunta de bueyes. Ver figuras $N^{\circ} 5$ y $N^{\circ} 6$.

Figura 5. Rollo cuchillo

Figura 6. Rollo cuchillo operando

Fuente: www.falc1993.com/es/prodotti/trincia.html

Para iniciar la operación el rollo se llena con agua hasta $3 / 4$ de su capacidad, aumentando su peso y mejorando la eficiencia en la deposición de los abonos verdes; al emplear este implemento las coberturas de los abonos verdes se hacen más duraderas, prolongando sus beneficios para el cultivo comercial.

Desbrozadora: es un implemento diseñado para picar todo tipo de material vegetal como abonos verdes, socas de pastos y cultivos o biomasa indeseable y esparcirlas uniformemente sobre el suelo, facilitando considerablemente la labor de surcado en los cultivos que requieran la operación de maquinaria de siembra directa. Ver figura ${ }^{\circ}{ }^{\circ}$ 7.

Figura 7. Desbrozadora picando materia vegetal

Fuente: www.falc1960.com/es/prodotti/trincia.html

Requiere para su operación de alrededor de 40 HP por metro de ancho de corte.

Cortamaleza: este aparato se conoce como rotospeed, guadañadora o cortadora rotativa. Su función es cortar todo tipo de material vegetal existente sobre el suelo y deponerlo; a diferencia de la desbrozadora, el material depuesto es más largo en terrenos que no están bien nivelados deja sitios con suelo descubierto. Ver figura $\mathrm{N}^{\circ} 8$.

Figura 8. Cortamalezas

Fuente: www.empresario.com.co/cimeagricola/producto10.html

- Otras herramientas: adicionalmente a las herramientas anteriormente descritas, en las que se busca aumentar la eficiencia de deposición de los abonos verdes, se pueden utilizar herramientas disponibles en las zonas de trabajo tales como machetes, hoz, guadañadoras y otros que permitan cumplir con dicha labor.

2.3.2. EQUIPOS PARA MANEJO DE COBERTURAS

- Aspersora de espalda: son utilizadas para la aplicación de desecantes en las coberturas, para el control de biomasa indeseable en los cultivos y también para aplicar pesticidas durante el ciclo del cultivo. Las aplicaciones tradicionales utilizan grandes cantidades de agua y dosificaciones inadecuadas de los productos, lo cual acarrea ineficientes controles. Ver figura $\mathrm{N}^{0} 9$.

Figura 9. Agricultor utilizando la aspersora de espalda

Fuente: www.falc1960.com/es/prodotti/trincia.html

2.3.3. EQUIPOS DE SIEMBRA

Con la labranza convencional se invierte la capa superficial del suelo, empleando para ello arados y rastras de discos así como el arado rotativo (Rotovator). En el método de labranza mínima se reduce la intensidad de preparación, no se invierte el perfil, se contribuye a la conservación de los suelos y se disminuye los costos de preparación.

[^0]Figura 10. Modelo de vibrosurcadora multipropósito

Fuente: www.falc $1960 . c o m / e s / p r o d o t t i / t r i n c i a . h t m l ~$

Arado de cincel: utiliza como base el portaherramientas descrito anteriormente, al cual se le coloca de tres a cinco cinceles con sus respectivos escardillos; este arado puede operar a una profundidad entre 30 y 45 cm , sin invertir el perfil del suelo; es apto para romper capas endurecidas. Su trabajo se caracteriza porque la vibración que produce fractura el suelo aflojándolo, lo que permite una adecuada circulación de agua y aire, facilitando la germinación y emergencia de las semillas, así como su posterior desarrollo radicular. Los cinceles pueden ubicarse con una separación entre sí de 50 a 60 cm . Se pueden colocar tres discos de corte adelante para evitar arrastre de la cobertura cuando se trabaja sobre praderas o abonos verdes. Ver figuras № 11 y No 12.

Figura 11. Cincel vibratorio
Figura 12. Cincel realizando operación

Fuente: www.falc1960.com/es/prodotti/trincia.html

Como todos los implementos de enganche por tres puntos, se debe trabajar en líneas rectas y si se quiere lograr una mayor profundidad de penetración se procede a pasar varias veces el implemento en la
misma dirección; no es recomendable cruzar los pases del cincel, es preferible trazar líneas paralelas al trazado original del terreno.

Surcadora aporcadora de tracción animal: corresponde a una versión mejorada del arado de chuzo usado por los agricultores.

Este implemento está diseñado para surcar y para realizar labores complementarias al cultivo como el aporque, facilitándole al agricultor el trabajo en lotes con cobertura. La surcadora aporcadora tiene un diseño cuadrangular que permite surcar o aporcar con cobertura en superficie sin arrastrar los materiales vegetales en la superficie. Ver figura № 13.

Figura 13. Agricultor realizando aporque con cobertura

Fuente: ww.rds.org.co

- Sembradoras abonadoras: son equipos de gran importancia en siembra de precisión ya que permiten a los agricultores realizar todas las labores de siembra en forma simultánea (surcado, fertilización, siembra y tapado). Ver figura № 14.

Figura 14. Modelo de sembradora abonadora

Fuente: www.empresario.com.co/cimeagricola/producto10.html

- Matraca: con este implemento se adecua el suelo, se pone la semilla y el fertilizante y se tapa en una sola operación. Un solo operario puede sembrar más de una arroba de arveja en un dia. Se considera la herramienta de siembra de precisión por excelencia, ya que el movimiento de suelo realizado por esta es mínimo; adicionalmente, permite sembrar en casi cualquier terreno y pendiente.

El implemento está construido sobre dos soportes de madera con mangos para ser sujetadas por un operario; emplea dos tolvas en las cuales se depositan el abono y las semillas respectivamente (arveja, maiz, frijol y habichuelas), de las que, por medio de dosificadores que permiten regular las cantidades de semilla y fertilizante, se descarga a dos puntas metálicas ubicadas en la parte inferior de los cuerpos de madera que son las encargadas de depositar la semilla y el abono en el suelo. Ver figura № 15.

Figura 15. Matraca para siembra en labranza mínima

Fuente: www.falc 1960.com/es/prodotti/trincia.html

- Sembradora de tracción animal: es un implemento mecánico que por su tamaño, requiere de la fuerza de uno o dos animales para ser operado, por lo que su rendimiento es mayor que en las prácticas convencionales en cultivos de maíz, arveja y frijol. Ver figura № 16.

Figura 16. Modelo de sembradora de tracción animal

Fuente: www.falc1960.com/es/prodotti/trincia.html

2.4. EL IMPACTO SOCIAL DE LA LABRANZA MÍNIMA Y LA SIEMBRA DE PRECISIÓN

2.4.1. La agricultura, antes del uso de la maquinaria agrícola

Partiendo del hecho que los cambios ocurridos en las actividades agricolas han tenido lugar durante cientos y hasta miles de años, y, generalmente ocurren como consecuencia de la adquisición de nuevos conocimientos sobre la naturaleza y el desarrollo de tecnologías innovadoras. A continuación se hace referencia en forma generalizada los hechos y procesos que ocurrieron:
2. Los pueblos eran nómadas y se volvieron sedentarios al comprobar las ventajas de la agricultura.
2. Las mujeres iniciaron las actividades agrícolas. Fueron las primeras en cavar para recolectar raices y tubérculos.
2. El primer instrumento agrícola fue el palo excavador de los bosquimanos (coa), sustituido luego por el azadón primitivo.

2 El uso del arado (inicialmente un azadón pesado), y la necesidad de mayor fortaleza para moverlo, determinó que el hombre empezara a realizar labores agrícolas. Tomó vigencia la utilización de la fuerza animal. Camellos, asnos y caballos comenzaron a arrastrar los primeros arados de madera.
2. En América, donde el animal doméstico no estuvo asociado a la agricultura, el arado no existió. Cuando los conquistadores llegaron, los indígenas solo empleaban la coa, la pala y el azadón.

* El cultivo de plantas alimenticias se inició en diferentes regiones, en distintas épocas, según el estado de desarrollo de sus pobladores.

2 La difusión de semillas y conocimientos agrícolas fue muy limitado inicialmente debido al mismo sedentarismo. Luego empezó la difusión,
merced a los éxodos, las invasiones y el intercambio al iniciarse el comercio.
2. Las primeras especies cultivadas fueron los cereales, luego el olivo, la vid, el algodón, las cebollas, las arvejas, coles, lentejas y guisantes.
2. Los cereales se constituyeron en las plantas más codiciadas, ya que el grano se utilizaba para la alimentación humana y la paja para los animales.
(Osorio Marulanda, 1987)

2.4.2. La agricultura, con el uso de la maquinaria agrícola

Con el uso del arado movido por animales como el buey o el caballo y la invención de la máquina de vapor se inicia el empleo de aparatos mecánicos en las labores agricolas y pecuarias. Al comienzo son tractores grandes y pesados que desarrollan labores de preparación de suelos con aperos poco eficientes. Luego vienen los tractores con motor de combustión interna que son más rápidos y más versátiles. Al mismo tiempo se fabrican implementos como sembradoras y cultivadoras, para otras labores agricolas.

Los avances cientificos y tecnológicos, al incrementar la productividad en las actividades agropecuarias, han traído como consecuencia la reducción del número de personas necesarias para las labores de producción de alimentos y gran parte de la población abandone la agricultura para trasladarse a los centros industriales. Además, la agricultura y la ganadería ocupan un sector cada vez más reducido de la población, dando origen a profundas transformaciones sociales y económicas. (Osorio Marulanda, 1987)

2.4.3. La agricultura, con la labranza mínima y la siembra de precisión

A principio de los años 70, los agricultores de América del Norte y del Sur comenzaron a someter a prueba la labranza de conservación, y aún la labranza mínima y siembra de precisión. Con la técnica de conservación, los agricultores dejan los restos de los cultivos en la tierra después de la cosecha, en vez de ararlos o quemarlos. Siembran nuevos cultivos con aperos especialmente diseñados, que introducen las semillas por un hueco abierto en el suelo, por debajo de la capa protectora de materia orgánica formada de residuos en descomposición. (FAO, 2000)

Los agricultores que utilizan la técnica de conservación a menudo también siembran cultivos de "cubierta" para proteger los suelos. Estos cultivos proporcionan además otros beneficios a las especies cultivadas. Por ejemplo, las legumbres aportan elementos nutritivos a los suelos, mientras que las plantas con raíces fuertes y profundas aflojan los suelos compactos.

A 25 años de los primeros experimentos con éstas técnicas, este nuevo método de cultivo hoy se denomina agricultura de conservación porque mantiene los elementos nutritivos en el suelo, conserva el agua al favorecer la absorción e infiltración, además de proteger la biodiversidad mediante el respeto del equilibrio natural del campo.

Con esta técnica, en vez de la labranza tradicional se produce otra "biológica", realizada por la fauna del suelo: gusanos e insectos. (FAO, Op. Cit.)

La labranza mínima es una técnica que beneficia a todos, en distintos aspectos: para el agricultor, se reduce el trabajo, el tiempo y la energía agrícola, la producción es más estable, particularmente en los años secos al
mejorar la infiltración del agua; así mismo, las cosechas aumentan gradualmente al reducirse cada vez más el consumo de insumos, elevando las ganancias. (FAO, 2000)

En el aspecto ambiental y de la comunidad, se hace más constante la corriente de los ríos y se reestablecen los pozos secos, gracias a una mayor y mejor absorción de la lluvia, el agua es más limpia debido a que hay menos erosión, se refuerza la seguridad alimentaria y se da una menor utilización de combustible en la agricultura. (Birbaumer, 2000)

3. CONCLUSIONES Y RECOMENDACIONES

Luego de los resultados nefastos de la agricultura que se viene practicando hasta ahora, debemos pensar en un sistema de producción agrícola ecológica y sostenible, que produzca alimento y bienestar al hombre con base en equilibrios biofísicos y conservación del ambiente. Debemos implementar en el trópico colombiano, de acuerdo con las condiciones y necesidades locales, sistemas basados en la fertilidad natural del suelo y el cuidado del ambiente en general. Tenemos herramientas en los insumos naturales, el control biológico con predadores, parasitoides, microorganismos antagónicos, biopreparados, los abonos orgánicos, el manejo de arvenses (biomasa indeseable), la labranza mínima, la siembra de precisión, y sobre todo con coberturas en nuestras condiciones trópico ecuatorial. La asimilación de estos sistemas deben hacerse en forma planificada y calmada. Primero, hay que crear conciencia de sus beneficios y de cuidados que debemos tener con el ambiente y los recursos naturales; luego se debe difundir su filosofia y transferir el conocimiento y las herramientas necesarias, dándole manejo empresarial, asi sea en forma elemental, a la unidad productiva. Debe ser un proceso gradual y participativo, con intercambio de saberes, en el cual se brinde una asistencia técnica integral, con apoyo estatal e institucional a los agricultores.

Cuando se examinan los problemas que confrontan el desarrollo y la adopción de sistemas de labranza sustentable, resulta imposible separar los problemas biológicos y socioeconómicos de la práctica agrícola. Muchas veces las complicaciones sociales y las limitantes políticas, más que los problemas técnicos se transforman en barreras para cualquier transición desde sistemas convencionales de altos insumos a sistemas agrícolas que consumen poca energía y que conservan el ambiente, en pro del mejor bienestar.

CAPITULO II

RESUMEN

Los productores que practican la agricultura convencional (bajo el criterio de "revolución verde") se quejan cada vez más que sus suelos ya no producen, que invierten más y ganan menos, que aparecen más plagas y enfermedades y su calidad de vida está cada dia peor; pero no nos damos cuenta que el problema central de la agricultura convencional en Colombia y el mundo es la pérdida de capacidad productiva del suelo o pérdida de fertilidad causada básicamente por procesos como: erosión, la disminución de los contenidos de materia orgánica, la contaminación por altos volúmenes de agrotóxicos en ellos vertidos y sobre todo por la afectación a la microbiota del suelo, y con ello a la bioestructura.

La erosión es el conjunto de las acciones que llevan a la degradación y demolición de la superficie terrestre. Si en un terreno agrícola cae más agua de la que puede absorber éste, se formarán corrientes que producirán erosión laminar, es decir, que arrastran consigo la capa superficial del suelo, si se encuentra descubierto.

Dentro de las causas que conllevan a la erosión se encuentra el uso continuo del arado de vertedera, gran problema que afronta la agricultura hoy en día. Además, eliminar la vegetación de la superficie en las épocas de lluvias no solo deja el suelo expuesto a estas que lo deterioran, sino que desecha uno de los principales factores de circulación de nutrientes de los suelos, al destruir la bioestructura, fundamental para la nutrición de las plantas.

Esto trae como consecuencia daño a la rizosfera, que constituye el horizonte biodinámicamente activo de la litosfera, teniendo como efecto evidente la
alteración de los ecosistemas. Los factores más influyentes en la formación de la erosión en los suelos agrícolas son: el relieve del terreno, la naturaleza del suelo, la vegetación, efecto de la mecanización, del cultivo y las acciones antrópicas no concordantes con las condiciones del trópico ecuatorial (en nuestro caso).

Para conservar el suelo, que es un recurso natural renovable, su uso racional y prudente llevará al mantenimiento de una agricultura próspera y permanente soportada por un suelo fértil. Es decir, lo que se busca con la aplicación de métodos de conservación es el establecimiento de un nuevo nivel de equilibrio, diferente al natural, en el cual el hombre de hoy y de mañana aproveche plenamente los dones de la naturaleza. Para esto se cuenta con unas prácticas culturales y mecánicas de conservación de suelos que se pueden aplicar para controlar la erosión y la disminución de la fertilidad.

Otra manera de conservar el suelo es aplicando el sistema de labranza que ha revolucionado todos los conceptos de éste hasta ahora conocidos.

La preparación del suelo era tradicionalmente usada para controlar biomasa indeseable, dar aireación al suelo, incorporar residuos vegetales, etc. Durante siglos existió la convicción que la preparación del suelo era necesaria para obtener un desarrollo óptimo de las plantas. En años recientes, al conocerse los perjuicios causados por el laboreo continuo del suelo, tales como destrucción de la bioestructura, disminución de la materia orgánica, aumento de los riesgos de erosión, etc., se ha producido un gran interés hacia las técnicas de la labranza mínima o de siembra de precisión.

Según Theodor Friedrich, Ingeniero agrónomo superior de la FAO "el concepto de labranza mínima y siembra de precisión, procede directamente
del reconocimiento de que la labranza mecánica está contribuyendo a la degradación de los suelos en proporción masiva, sobre todo en los países tropicales y subtropicales".

Este sistema de labranza contempla tres principios fundamentales los cuales son base para la preparación de ésta. Estos son:

* Mínimo movimiento del suelo: la preparación del suelo no es necesaria para la producción vegetal. Ahí está la verdadera revolución tecnológica del siglo XXI; el suelo no se debe preparar como tradicionalmente se hacia, no se debe explotar.

Para el caso de la siembra de precisión, la semilla se coloca en el sitio donde se desea la planta y se efectúa un movimiento mínimo del suelo, de modo que la semilla queda tapada con tierra suficiente que le permita su germinación y anclaje inicial. En la labranza mínima solamente se abre el surco en donde se coloca la semilla, el fertilizante y los correctivos, si es necesario, sin mover o preparar el suelo en las calles.

Además de no mover el suelo, mejora la infiltración, no daña la estructura ni interrumpe el drenaje natural, evita la pérdida de carbono y la rápida mineralización de la materia orgánica.
2. Rotación con abonos verdes: hoy en día, en la labranza mínima el abono verde no se incorpora al suelo por ningún motivo, sino se tumba o depone en un estado fenológico adecuado, de manera que queda dispuesto sobre el suelo a manera de cobertura. Presenta numerosas ventajas a corto, mediano y largo plazo como brindar cobertura al suelo favoreciendo la infiltración, evitando la escorrentía, se regula la temperatura del suelo y disminuye la evaporación. Las raíces de los abonos verdes actúan como
drenajes naturales, evita la lixiviación de nutrientes. Los abonos verdes deben rotarse dentro del lote, de tal forma que no se conviertan en monocultivos.

2 Cobertura permanente: un suelo cubierto mantiene y estabiliza la temperatura, evitando calentamientos o enfriamientos excesivos, creando el hábitat propicio para la actividad biológica. Esta cobertura, al igual que en un bosque nativo, recibe la lluvia y la infiltra lentamente, evitando el arrastre de partículas sólidas y en suspensión, también evita la perdida de humedad por evaporación. De la misma manera hace que las propiedades fisicas y biológicas se mantengan o se mejoren a través del tiempo; ésta se descompone suministrando materia orgánica barata -in situ- sin costos de transporte o mano de obra, sin contaminantes y de muy buena calidad.

Aplicando estos principios se darán unos efectos benéficos en la conservación del suelo, conservación del agua, a los organismos del suelo, materia orgánica y el medio ambiente.

Para lograr que se den todas las condiciones anteriores es necesario la introducción y/o modificación de herramientas agrícolas, que nos permitan la realización de las labores necesarias para la siembra de los cultivos, manteniendo la cobertura vegetal en la superficie, sin invertir el suelo o dejarlo expuesto.

Los equipos para deposición de cobertura son: el rollo cuchillo, desbrozadota, cortamaleza y otras herramientas tales como machetes, hoz, guadañadoras. Para manejo de coberturas se encuentra la aspersora de espalda para aplicar los biopesticidas.

Los equipos de siembra son: vibrosurcadora, arado de cincel, surcadora aporcadora de tracción animal, sembradora de tracción animal, sembradoras abonadoras, matracas, sembradoras de tracción mecánica de 3 y más líneas.

Es importante y fundamental la conservación de los suelos para poder asegurar la producción requerida para la alimentación de la población actual y la futura en el planeta Tierra.

En la Costa Atlántica Colombiana, según el centro de investigación Turipaná, se está llevando a cabo en los departamentos de Córdoba, Sucre, Bolívar y Atlántico, proyectos para el manejo del cultivo de maíz teniendo como finalidad poner en prácticas conceptos básicos teóricos provenientes de la experiencia y resultados de investigaciones obtenidas por el ICA, CORPOICA y FENALCE, donde la preparación del suelo se da con arado subsolador y arado de cincel como equipos de mecanización propicios para esta labor.

También se está llevando a cabo el proyecto "manejo agronómico de algunos cultivos forrajeros y técnicas para su conservación en la Región Caribe Colombiana donde se aplica la rotación de cultivos, siembra de gramíneas y la preparación del suelo, si es necesario, se hace con arado de cincel.

Según CORPOICA, se realizó el proyecto "abonos verdes, alternativa para mejorar la capacidad productiva de los suelos arroceros de la Mojana" llevándose a cabo en Guaranda y Majagual en el año 1996.

Estudiantes de la Universidad de Sucre han realizado trabajos sobre la misma temática. Algunos de estos son:

- Trabajo de Grado "evaluación del efecto de la incorporación de abonos verdes en el sistema de producción arroz secano mecanizado en la Mojana" realizado por Virginia Isabel Montiel Pacheco.
- Trabajo de Grado "efecto del sistema de labranza conservacionista en suelos de ladera bajo el cultivo de papa en los municipios de Caldas Boyacá y Simijaca Cundinamarca" realizada por Plinio Alberto Castellano Peña.
- Monografía "elementos para la producción sostenible de yuca en el trópico ecuatorial" realizado por Néstor Enrique Mendivil Delgado.
- Monografía "elementos para producción sostenible del cultivo del maiz en sus diferentes asocios en el trópico ecuatorial" realizado por Rubén Darío Meriño Oviedo.
- Monografia "elementos fundamentales para una agricultura sostenible en el trópico ecuatorial" realizado por Humberto Jaime Pérez Bustamante.
- Monografía "modelo agroecologico para el desarrollo de una agricultura sustentable en el municipio de Sincelejo" realizado por Victor Manuel Bohórquez Rivera.

BIBLIOGRAFÍA CONSULTADA

ALTIERI, Miguel A. Bases agroecológicas para una producción agrícola sustentable. 1994

ALTIERI, Miguel. Diseñando agroecosistemas sustentables. 1987

ALONSO, Carmen y otros. Compendio de suelos 2. Editorial Pueblo y Educación. Ciudad de la Habana, Cuba. 1977.

ANÖNIMO. Documento sobre prácticas agronómicas para la conservación de suelos. 2002
http://www.usb.org/ag/ags/agse/agse_s/general/cont1.htm

BIRBAUMER, Georg. Cultivar sin Arar. Labranza mínima y Siembra directa en los Andes. $1^{\text {a }}$ edición. Bogotá. 2000

CELEDÓN MANOTAS, Alfredo. Curso básico de agricultura para clima cálido. Edit. Tercer Mundo Editores. $1^{\text {a }}$ edición. Bogotá. 2000.

CUELLAR GÁLVEZ, David y ARGUELLO ARIAS, Helidoro. Capacitación de docentes universitarios en educación ambiental. Módulo II. Ministerio del Medio Ambiente, e ICFES. Santa fe de Bogotá. 2000

CHECUA, campo para el Futuro. Cultivar sin Arar. Sistemas Sostenibles de Producción. Editores Gobernación de Cundinamarca y PROCAS. Bogotá. 2002.

FAO. Los "Cultivos de Cobertura" en Brasil. Publicado en Mayo de 2001. http://www.faoag21revistaenfoquesagriculturadeconservaciónenBrasil.htm

FAO. Labranza de conservación ¿fin del arado? 2000.
http://www.fao.com.ar/noticias/medioambiente/N-076.htm

FOURNIER. Conservación de Suelos. Ediciones Mundi-Prensa. Madrid, España. 1975.

HERNÁNDEZ, Luis. Agricultura ecológica, una alternativa para Colombia. Facultad de Ingenieria Agroindustrial, U. San Buenaventura, Cali. 2002 http://www.usb.edu.co/revista/-pdf/ingenierías5-2-agroindustrial.pdf.

IDEAM. Degradación de los suelos por erosión, remoción en masa y sedimentación. 20001.
http://www.ideam.gov.co/indicadores/suelos2.htm.

IGAC. Propiedades físicas de los suelos. Editor subdirección agrológica. Bogotá. 1990

MILA PRIETO, Alberto. Suelos, pastos y forrajes. Edit. Uniser. Santafe de Bogotá. 1996

OSORIO MARULANDA, Diego Libardo. Introducción a la tecnologia agropecuaria. ICFES. Impreso por editora Guadalupe Ltda. Bogotá. 1987.

PARISI, Vittorio. Biología y ecología del suelo. Edit. Blume. Barcelona. 1979

PRIMAVESI, Ana. Manejo del suelo. Universidad Federal de Santa María. Río Grande de Sul, Brasil, 1999.

RDS (Red de Desarrollo Sostenible de Colombia). Labranza mínima y Siembra directa en los Andes: el arte de producir conservando suelo y agua. Bogotá. 2003.
http://www.rds.ogr.co/oficina.htm?x=7469

ROSAS ROA, Antonio. Documento sobre Agricultura Orgánica Practica. Bogotá. 2002.

STUDDERT, Guillermo. Documento sobre Labranza Conservacionista. Facultad de Ciencias Agrarias. Universidad Nacional de Mar de Plata. Argentina. 2002.

SUÁREZ, Fernando. Conservación de Suelos. Instituto Interamericano de Cooperación para la Agricultura. $3^{\text {era }}$ edición. Costa Rica. 1982.

Sitios Web:
http://bases.colnodo.org.co/reloc/index.html
http://www.falc1960.com/es/prodotti/trincia.html
http:rds.org.co
www.empresario.com.co/cimeagricola/producto10.html

GLOSARIO

Abstract

A

ABONO VERDE: planta que se cultiva, se corta y se entierra o se deja sobre la superficie con el objeto de mejorar el suelo, especialmente aumentando su contenido de materia orgánica.

ACEQUIAS DE LADERAS: estructuras mecánicas de conservación de suelos que consiste en canales de 30 cm . de ancho en el fondo, con taludes de 1:1 y de profundidad y desnivel variables, las cuales se construyen a distancias regulares de acuerdo con la pendiente y con el uso del terreno.

AGREGADO (de suelo): una masa sencilla de suelo formada por muchas partículas reunidas en forma de prisma, terrón o gránulo.

AGRICOLA, producción: producción de cosechas o ganados en la finca.

B

BARRERAS VIVAS: hileras de plantas perennes y de crecimiento denso dispuestas con determinado distanciamiento horizontal y sembradas a través de la pendiente, casi siempre en contorno o en curvas de nivel.

BLANDO, suelo: suelo que puede labrarse o penetrarse con facilidad.

C

COBERTURA MUERTA (MULCH) Capa natural o artificial de residuos de plantas u otro material que se aplica sobre la superficie del suelo.

CONTORNO, Cultivo en: ejecución de todas las operaciones de labranza, tales como sembrar, desyerbar, cosechar, sobre líneas de contorno.

CONTORNO, línea de: línea imaginaria sobre la superficie de la tierra con todos sus puntos a la misma altura.

CULTIVOS DENSOS: plantas de valor económico que, por crecer a muy corta distancia unas de otras, impide el crecimiento excesivo de malezas.

D

DESVIACIÓN, Canales de: estructuras mecánicas, generalmente de sección trapezoidal, los cuales cortan el flujo del agua de escorrentía de predios altos y llevan esas aguas a un desagüe bien protegido, impidiendo que causen daños en áreas más bajas.

E

EROSIÓN DE LOS TERRENOS: Remoción de la superficie de los terrenos por la acción del agua corriente superficial, del viento u otros aspectos geológicos.

EROSIÓN DEL SUELO, Remoción de materiales del solum por la acción del agua corriente superficial o el viento.

EROSIÓN EÓLICA: desprendimiento, transporte y deposición del suelo por la acción del viento.

ESCORRENTİA: Aquella porción de las lluvias que no penetra al perfil del suelo y que fluye hacia los rios en forma de corriente superficial.

ESTRUCTURA DEL SUELO: forma de los agregados en los cuales se ordena las partículas individuales del suelo.

F

FAJAS AL CONTORNO: Cultivo en: práctica cultural de conservación de suelo que consiste en cultivar las cosechas en fajas de alturas variables dirigidas en forma transversal a la pendiente del terreno.

FERTILIDAD DEL SUELO: cualidad que capacita a un suelo para suministrar los compuestos necesarios, en cantidades convenientes y balanceado apropiadamente, para el crecimiento de plantas específicas, siendo favorable otros factores como la luz, la temperatura y las condiciones fisicas del suelo.

FERTILIZANTE: cualquier material mineral que se agrega al suelo para suministrar uno o más nutrientes para las plantas.

H

HUMUS: parte de la materia orgánica del suelo, bien descompuesta y más o menos estable.

INFILTRACIÓN: penetración descendente del agua en el suelo o en cualquier otro material de afuera hacia adentro.

M

MATERIA ORGÁNICA: termino general que se aplica al material animal o vegetal, en cualquier estado de descomposición, que se encuentra sobre o dentro del suelo.

0

ORGÁNICO, suelo: término general con el cual se designa un suelo cuya parte sólida está formada principalmente de materia orgánica.

P

PENDIENTE DE UN TERRENO. Declive del terreno medido en forma de metros de caída por cada 100 M . horizontales.

PERCOLACIÓN: movimiento descendente del agua a través del perfil del suelo.

PLANTA PERENNE: planta que vive tres o más años.

R

ROTACIÓN DE CULTIVOS: sucesión recurrente y más o menos regular de diferentes cultivos en el mismo terreno.

S

SUELO: cuerpo natural compuesto de materiales orgánicos y minerales colocado sobre la superficie de la corteza terrestre, en el cual crecen las plantas.

SUELO SUPERFICIAL: aquella parte del horizonte superior del suelo, que se remueve con las herramientas de cultivos (10-20 cm.).

T

TALUD: pendientes de los lados de un canal o banqueo, se expresa en forma de relación entre distancia horizontal y vertical.

TERRAZAS: canal superficial ancho o banqueo, construido a través de los terrenos pendientes, con desniveles e intervalos específicos, la cual intercepta el agua de escorrentía sobrante, retarda su flujo y propicia su infiltración o la lleva a desagües

TERRENO: medio ambiente natural dentro del cual tiene que verificarse la producción.

TERRENO AGRİCOLA: terreno utilizado regularmente para la producción agrícola.

TERRENO ARABLE: terreno que, en las condiciones actuales, es capaz fisicamente, sin necesidad de mejoramientos substanciales, de producir cosechas que necesitan labores de cultivo periódicas

ANEXOS

Abstract

ANEXO 1

INDICADORES DE LA SUSTENTABILIDAD INFLUENCIADA POR PROCESO DE DEGRADACIÓN DEL SUELO

Procesos	Indicadores del suelo afectados
Erosión acelerada	Disminución de carbón orgánico, disminución de la profundidad del suelo, disminución del agua disponible, disminución de la capacidad nutricional.
Compactación	Aumento de la densidad del suelo, disminución de la porosidad, disminución de la tasa de infiltración.
Degradación química	Reducción en ClC, agotamiento de nutrientes, eliminación biológica.
Acidez	Bajo de pH, decremento en saturación de bases, concentración de Al. Incremento en conductibilidad eléctrica, cambio en color del suelo, incremento en sales solubles totales.
Alcalinización	Decremento en infiltración, cambio de color en el suelo debido a salinización del carbono.
Degradación biológica	Reducción en contenido de materia orgánica y biomasa de carbono, reducción de biodiversidad (poblaciones de lombrices, etc.)

ANEXO 2

PRINCIPIOS BÁSICOS Y OPCIONES TECNOLÓGICAS PARA MEJORAR el uso sustentable de recursos del suelo.

ESTRATEGIA	OPCIONES TECNOLÓGICAS
Mejorar estructura del suelo	Cultivos de cobertura,mulching>>, conservación.
Elevar contenido de materia orgánica	Aplicación de estiércol, desechos orgánicos, abonos verdes, labranza de conservación.
Reducir compactación	Tracción animal, labranza minima, uso de eco-arados.
Mejorar reciclaje de nutrientes	Aplicación de materia orgánica, agroreforestería, cultivos múltiples, integración animal.
Manejar la acidez del suelo	Usos de variedades tolerantes, aplicación de cal, adición de materia orgánica y enmiendas.
Manejo de salinidad y alcalinidad	Riesgos especiales para mejorar lixiviación de sales, aplicación de enmiendas, uso de cultivos apropiados.
Mejorar fertilidad	Activación biológica del suelo, reciclar desechos orgánicos, integración animal.

Tomado de ALTIERI, Miguel. Diseñando agroecosistemas sustentables. 1.987

ANEXO 3.

INTERACCIONES COMPLEMENTARIAS EN SISTEMAS DIVERSIFICADOS DE CULTIVO QUEDAN COMO RESULTADO MEJOR FERTILIDAD DEL SUELO Y PROTECCIÓN BIOLÓGICA.

Tomado de STUDDERT, Guillermo. Documento sobre Labranza Conservacionista. 2002

ANEXO 4

REQUISITOS GLOBALES PARA EL DESARROLLO DE UNA AGRICULTURA SUSTENTABLE

Tomado de Checua. Campo para el futuro. Cultivar sin arar. 2.002

[^0]: - Vibrosurcadora multipropósito: es una herramienta versátil, diseñada para realizar varias labores; se puede adaptar a las condiciones del terreno, distancia de siembra de los cultivos, profundidad y ancho de surcado. Consta de un marco portaherramientas con enganche de tres puntos sobre el cual se instalan discos de corte y de tres a cinco cinceles vibratorios con sus respectivos fusibles, a los cuales se les acondicionan escardillos o palas y rejas de acuerdo a la labor requerida. Ver figura № 10.

