MANEJO DE UN SISTEMA DE ALIMENTACIÓN ALTERNADA EN POLLOS DE ENGORDE EN LA ZONA AVÍCOLA DEL MUNICIPIO DE SAMPUES SUCRE - COLOMBIA

CARLOS OLIMPO SOLANO CORENA JOSÉ GREGORIO TORRES ALDANA

UNIVERSIDAD DE SUCRE
FACULTAD DE CIENCIAS AGROPECUARIAS
PROGRAMA DE ZOOTECNIA
SINCELEJO
2003

MANEJO DE UN SISTEMA DE ALIMENTACIÓN ALTERNADA EN POLLOS DE ENGORDE EN LA ZONA AVÍCOLA DEL MUNICIPIO DE SAMPUES SUCRE

CARLOS OLIMPO SOLANO CORENA JOSÉ GREGORIO TORRES ALDANA

Trabajo de Grado para optar el título de Zootecnista

Director
DR. EDUARDO CAMPILLO
Zootecnista

UNIVERSIDAD DE SUCRE
FACULTAD DE CIENCIAS AGROPECUARIAS
PROGRAMA DE ZOOTECNIA
SINCELEJO
2003

> Nota de aceptación:
\qquad

Firma del presidente del jurado

Firma del jurado

Firma del jurado

AGRADECIMIENTOS

El grupo investigador expresa sus más sinceros agradecimientos a:

Doctor Eduardo Campillo, director del presente Trabajo de Grado.

Universidad de Sucre.

Señor José Guevara, por su valiosa colaboración.

Doctora Luz Mercedes Botero, Decana de la Facultad de Ciencias Agropecuarias de la Universidad de Sucre.

A todas aquellas personas que de una u otra manera contribuyeron con la elaboración del presente proyecto.

DEDICATORIA

A Dios, por darme salud y fortaleza para la realización de una de mis metas trazadas.

A mi madre y mis hermanos por brindarme todo el apoyo y confianza necesaria para alcanzar esta meta.

A mis profesores, amigos y novia por su gran apoyo.

Carlos

A Dios, por darme salud, sabiduria y fortaleza para la realización de una de mis metas trazadas.

A mis padres por brindarme todo el apoyo y confianza necesaria para llevar a cabo este anhelo.

A mis hermanos, por apoyarme y tener paciencia a lo largo de mi carrera.

A mis profesores y amigos por su gran apoyo.

CONTENIDO

INTRODUCCIÓN 12

1. OBJETIVOS 13
1.1 OBJETIVO GENERAL 13
1.2 OBJETIVOS ESPECÍFICOS 13
2. MARCO DE REFERENCIA 14
3. METODOLOGİA 16
3.1 DESCRIPCIÓN DEL ÁREA DE ESTUDIO 16
3.2 MEDIDAS DEL GALPÓN 16
3.3 DISEÑO DE CAMPO 17
3.3.1 Ganancia de peso 17
3.3.2 Conversión alimenticia 17
3.3.3 Índice de mortalidad 17
3.3.4 Factor de eficiencia europea (F.E.E.P.). 17
3.4 RELACIÓN COSTO - BENEFICIO 17
3.4.1 Rentabilidad 18
3.5 DISEÑO EXPERIMENTAL 18
3.6 ANÁLISIS ESTADÍSTICO 18
3.7 MANEJO TÉCNICO 18
3.7.1 Desinfección. 18
3.7.2 Recepción de pollitos 19
3.7.3 Manejo de comederos 19
3.7.4 Manejo de bebederos 20
3.7.5. Manejo de cortinas 20
3.7.6 Manejo de luces 20
3.7.7 Manejo de la densidad de las aves 20
3.7.8 Plan de vacunación 20
3.7.9 Pesajes. 21
3.7.10 Manejo del alimento. 21
3.7.11 Mortalidad. 22
3.7.12 Manejo del agua de bebida. 22
4. RESULTADOS Y ANÁLISIS 23
4.1 RESULTADOS 23
4.1.1 Factor de eficiencia europea (F.E.E.P.) galpón 3A (Lote experimental). Sistema de alimentación alternada 25
4.1.2 Factor de eficiencia europea (F.E.E.P.) galpón 3B (Lote testigo). Sistema de alimentación tradicional 26
4.1.3 Factor costo beneficio lote experimental 27
4.1.4 Factor costo beneficio lote testigo. 27
4.2 ANÁLISIS 28
CONCLUSIONES 30
RECOMENDACIONES 31
BIBLIOGRAFİA 32
ANEXOS 33

LISTA DE CUADROS

Cuadro 1. Consumo promedio de alimento durante seis semanas de edad en el lote experimental 23
Cuadro 2. Consumo promedio de alimento durante seis semanas de edad en el lote testigo 23
Cuadro 3. Peso promedio semanal y conversión alimenticia durante seis semanas de edad en el lote experimental 23
Cuadro 4. Peso promedio semanal y conversión alimenticia durante seis semanas de edad en el lote testigo. 24
Cuadro 5. Mortalidad y aves descartadas durante seis semanas de edad en el lote testigo 24
Cuadro 6. Mortalidad y aves descartadas durante seis semanas de edad en el lote experimental 24
Cuadro 7. Rendimiento en canal de las seis semanas de edad en el lote experimental 24
Cuadro 8. Rendimiento en canal de las seis semanas de edad en el lote testigo. 25
Cuadro 9. Costos de producción 26

LISTA DE ANEXOS

Anexo A. Localización de la zona de estudio 34
Anexo B. Manejo de cortinas 35
Anexo C. Manejo de equipos 36
Anexo D. Manejo de criadoras 37
Anexo E. Manejo del espacio o densidad. 38
Anexo F. Plan de vacunación. 39
Anexo G. Principales índices de rendimiento 40
Anexo H. Cálculo de la ganancia de peso. 41
Anexo I. Programa de alimentación 42
Anexo J. Control de mortalidad y descarte 43

RESUMEN

Por medio de esta investigación llevada a cabo en la Granja Nápoles, ubicada en el municipio de Sampués, departamento de Sucre, se pudo lograr la reducción de dos factores importantes en la producción de pollos de engorde como es la tasa de mortalidad y el consumo. Esto debido a que se alternó el alimento, lo cual se puede observar a través de los resultados obtenidos, comparando los animales del lote testigo con los del lote experimental. Se notó que hubo igual mortalidad en ambos lotes, es decir, 0.99\% y mayor consumo de alimento de las aves testigo con respecto a las aves experimentales (3.499,8 gr y 3.433,2, respectivamente). El éxito de la experiencia se refleja en el hecho que hubo un mayor rendimiento en canal de los pollos experimentales (71.6\%) sobre los testigos (71.09\%).

SUMMARY

By means of this investigation carried out in the Farm Naples, located in the municipality of Sampués, department of Sucre, you could achieve the reduction of two important factors in the production of chickens of it puts on weight like it is the rate of mortality. This due to like the food was alternated, that which one can observe through the obtained results, comparing the animals of the lot witness with those of the experimental lot. It is noticed that there was more mortality in the birds of the lot witness and bigger food consumption with regard to the birds of the experimental lot. The success of the experience is reflected in the fact that there was a bigger yield in channel of the experimental chickens on the witness.

INTRODUCCIÓN

Uno de los pilares en las explotaciones de pollos de engorde es la alimentación, ya que este aspecto es muy importante y determinante en el éxito o fracaso de una explotación.

De acuerdo al avance alimentario y al manejo zootécnico que se viene empleando en las producciones de animales, se obtienen numerosas alternativas de alimentación, facilitando al empresario el manejo en cuanto al crecimiento y desarrollo de los animales. Sin duda, la explotación avicola, en especial la del pollo de engorde, es una alternativa promisoria para nuestra región, debido a que permite hacer una inversión a corto plazo.

El sistema de alimentación alternada es un proceso a través del cual se intercala el alimento inicial y final en forma de crombo sucesivamente para obtener, en la sustitución de ellos, un máximo o mínimo de producción.

De otra parte, con la puesta en marcha de este proyecto, se otorga a la unidad de explotación, elementos básicos para adquirir un óptimo desarrollo, bajo nivel de mortalidad y alta eficiencia alimenticia, debido a que se ofreció una alimentación alternada a los pollos de engorde, lo que incrementó los ingresos y disminuyó los costos de producción, idealizando la relación costo - beneficio.

1. OBJETIVOS

1.1 OBJETIVO GENERAL

Evaluar el comportamiento productivo del pollo de engorde utilizando un sistema de alimentación alternado para disminuir mortalidad y mejorar eficiencia alimenticia en la granja Nápoles del municipio de Sampués.

1.2 OBJETIVOS ESPECÍFICOS

- Evaluar el efecto de la alimentación alternada en el desarrollo corporal del pollo de engorde.
- Evaluar la incidencia de un sistema de alimentación alternada sobre el índice de mortalidad.
- Evaluar los efectos que ocasiona la utilización de un sistema de alimentación alternada sobre la eficiencia alimenticia.

2. MARCO DE REFERENCIA

En Colombia se han realizado escasos estudios basados en este sistema de alimentación, toda vez que se trata de una dieta alternada que combina los componentes nutricionales del alimento usado comúnmente en las etapas de inicio y final, permitiendo una ganancia de peso óptima, pero que a diferencia del suministro habitual, con ésta se reduce la mortalidad, porque con este sistema se logra que el pollo convierta menos grasa.

Los responsables de este trabajo se permiten reseñar el manejo que se ha realizado a lotes de pollos de engorde, con este sistema de alimentación alternada en la Granja San José del municipio de Sampués, obteniendo los siguientes resultados a la sexta semana:

Consumo promedio ave	$: 3.850 \mathrm{gr}$.
Índice de mortalidad	$: 4.0 \%$
Peso promedio vivo	$: 1.860 \mathrm{gr}$.
Conversión alimenticia	$: 1.882$
Rendimiento en canal	$: 83 \%$
Factor de eficiencia europea (FEEP)	$: 200$
Factor costo/beneficio	$: 1.1$

La alimentación es uno de los factores más importantes en lo que respecta al éxito o fracaso de una explotación avícola. Según la FAO (1965), la alimentación cientifica de las aves se fundamenta en el conocimiento de los requerimientos nutritivos de cada tipo y edad de los animales y que tales requerimientos queden cubiertos gracias a la combinación de los ingredientes de los piensos en las
proporciones adecuadas. Los principios nutritivos básicos son: hidratos de carbono (almidones, azúcares, fibras), grasas, aceites y sus sustancias similares, proteinas y otras sustancias que contienen nitrógeno, minerales, vitaminas y agua.

La combinación de nutrientes y la mezcla de cada uno de ellos es, sin ninguna duda, el ideal para toda explotación avicola, ya que al alternar bien los nutrientes se obtienen buenos resultados en una explotación (Golden, 1976).

Según Cuaron (1995), existen dietas alternadas en otras especies animales (cerdo), que muestran que el valor de los alimentos está en función de sus características intrínsecas y de su valor complementario con el resto de los ingredientes disponibles; que es imposible una mezcla idónea que sirva como objetivo de evaluación para la sustitución y que la idea de máximo o mínimo de inclusión es automáticamente para obtener los mayores beneficios.

3. METODOLOGÍA

3.1 DESCRIPCIÓN DEL ÁREA DE ESTUDIO

El presente trabajo se realizó en la Granja Nápoles, ubicada en la zona suburbana de la cabecera municipal de Sampués, departamento de Sucre, la cual tiene como coordenadas $9^{\circ} 10^{\prime}$ de latitud norte y $75^{\circ} 26^{\prime}$ de longitud oeste del meridiano de Greenwich, a 160 m.s.n.m. (Véase el Anexo A).

De acuerdo con la clasificación ecológica de Holdridge, el área de estudio se encuentra dentro de la zona de vida correspondiente al bosque seco tropical (bsT), con una temperatura media de $28^{\circ} \mathrm{C}$, humedad relativa de 77%, una precipitación anual de 1087 mm , brillo solar promedio 186h/a y velocidad del viento $4 \mathrm{~m} / \mathrm{seg}$. La topografía es plana con pequeñas pendientes, lo suelos son franco arcillosos y areno arcillosos.

3.2 MEDIDAS DEL GALPÓN

El trabajo se realizó en el galpón No. 3 de la Granja Nápoles del municipio de Sampués, el cual está ubicado en la parte este de dicha granja, con capacidad para 640 pollos. Las aves se alojaron en un galpón de 16 metros de largo por cinco metros de ancho, con una altura de cinco metros y paredes laterales de 20 cm de alto, techo de palma, piso de concreto con un espesor de 5 cm , entrada principal provista de pediluvio para la desinfección del personal técnico y auxiliar. El galpón fue dividido con una malla plástica en dos lotes, 300 pollos para el lote testigo y 300 pollos para el lote experimental.

3.3 DISEÑO DE CAMPO

Para la realización del diseño de campo se analizaron las siguientes variables:
3.3.1 Ganancia de peso. Este parámetro se elaboró semanalmente, en forma individual para cada unidad experimental de cada lote, restando al peso final el peso inicial y al dividirlo entre siete, se obtuvo la ganancia de peso diario (Véase los cuadros 3, 4 y el Anexo H).

$$
G_{D}=\frac{P_{F}-P_{I}}{7}
$$

3.3.2 Conversión alimenticia. Esta variable se analizó semanalmente en cada lote, teniendo en cuenta el consumo de alimento en kilogramo/ave/semana entre la ganancia de peso/acumulado/semana (Véase cuadros 3 y 4).
3.3.3 Índice de mortalidad. El índice de mortalidad que se obtuvo fue el número de animales muertos durante el período (Véase los cuadros 5, 6 y el Anexo J).
3.3.4 Factor de eficiencia europea (F.E.E.P.). La obtención de este parámetro se elaboró para suplir las deficiencias del factor de conversión, ya que este factor involucra tiempo, peso alcanzado, supervivencia y conversión, es decir, todos los valores que se deben tener en cuenta para juzgar con mayor precisión el desempeño técnico de cada lote. La interpretación de resultados de un F.E.E.P. mayor de 180 puntos se considera excelente (Véase el Anexo G).

3.4 RELACIÓN COSTO - BENEFICIO

En esta evaluación se tuvo en cuenta todas las inversiones realizadas en este lote y los ingresos obtenidos. El cociente logrado de la relación de estos dos factores es mejor en la medida en que éste sea mayor (Véase los cuadros 11 y 12).
3.4.1 Rentabilidad. Para la estimación de este parámetro se tuvo en cuenta la utilidad obtenida en cada lote, la cual fue relacionada con los costos de inversión (Véase cuadro 10).

3.5 DISEÑO EXPERIMENTAL

Se utilizó un diseño enteramente al azar y por sexo. La unidad experimental fue 10 aves mixtas, haciéndose 10 repeticiones por tratamiento. Las aves se instalaron en un galpón con las respectivas divisiones entre tratamiento, marcándose las aves testigo con una cinta verde y las experimentales con una cinta roja. Las unidades experimentales son:

- Un lote mixto testigo de 300 pollos con una densidad de 7.5 aves por metro cuadrado, utilizando el sistema tradicional de alimentación.
- Un lote mixto experimental de 300 pollos con una densidad de 7.5 aves por metro cuadrado, utilizando un sistema de alimentación alternada.

3.6 ANÁLISIS ESTADÍSTICO

Partiendo del diseño propuesto en el análisis de datos de campo, se llevó a cabo la prueba t de Student, donde se hicieron las respectivas comparaciones entre los tratamientos. La fórmula de la prueba t de Student es la siguiente:

$$
t=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{S_{1}^{2}}{n}+\frac{S_{2}^{2}}{n_{2}}}}
$$

3.7 MANEJO TÉCNICO

3.7.1 Desinfección. Una semana antes de la llegada de los pollitos, se realizó una desinfección general de los galpones, a través de fumigación y lavado con
una solución yodada al 2.5% con dosis de 4cc/litro de agua; de igual manera se pintaron las paredes, puertas, mallas, pisos y muros con lechada de cal. Las cortinas fueron desinfectadas con una solución yodada, al igual que los comederos y bebederos.

Se colocó cal viva a la entrada del galpón para la desinfección de los zapatos o botas del personal técnico y auxiliar, además se realizaron dos fumigaciones semanales alrededor de las bodegas en los lugares más transitados por el personal técnico y auxiliar.
3.7.2 Recepción de pollitos. Una vez llegados los pollitos, se procedió al conteo y pesaje, alojándose en cada lote. Durante las dos primeras horas de llegada se les suministró agua de azúcar y una vitamina antiestrés para hidratarlos, antes del suministro del alimento.

Las criadoras se mantuvieron encendidas 24 horas antes de la llegada de los pollitos, lo que les proporcionó una temperatura ideal de $30^{\circ} \mathrm{C}$ (Véase el Anexo D). Una vez instalados los pollitos se tomó un registro individual para cada lote (experimental y testigo).
3.7.3 Manejo de comederos. Durante los primeros días se colocó una bandeja plástica o bandeja desechable por cada 100 pollitos, con el fin que tuvieran fácil acceso a él. A los ocho días se retiraron las bandejas dejando definitivamente los comederos manuales de tolva de 12 Kg . La altura de los comederos fue revisada periódicamente para asegurarse que el borde superior del comedero coincida con la altura del lomo de los pollitos.

Hasta el final de las tres semanas (21 dias), las aves recibieron alimento a libre voluntad. A partir de la cuarta semana se aplicaron restricciones, manteniendo elevados los comederos en las horas de mayor temperatura, es decir, de 11:00 a.m. a 4:00 p.m., tanto para el lote testigo como para el lote experimental. Se tomó un registro individual para cada lote.
3.7.4 Manejo de bebederos. El agua se colocó una hora antes de la llegada de los pollitos. Se utilizó un bebedero automático por cada 100 pollitos. Los bebederos fueron colocados entre la criadora y los círculos, alternados con los comederos. Se colocó agua fresca todos los días durante la primera semana, con previo lavado y desinfección de ellos. A partir de la segunda semana se empezaron a cambiar gradualmente los bebederos de iniciación por los automáticos definitivos (Véase el Anexo C).
3.7.5. Manejo de cortinas. Se colocaron cortinas de polipropileno en la parte exterior del galpón para regular la ventilación y temperatura externa de acuerdo con la edad del pollo y las condiciones ambientales (Véase el Anexo B).
3.7.6 Manejo de luces. Las criadoras se encendieron 24 horas antes de la llegada de los pollitos hasta las dos primeras semanas, regulando la altura de la criadora con respecto al piso, después de la segunda semana se retiraron las criadoras y se utilizó el manejo de luces, durante las horas del día luz natural y durante las horas de la noche luz artificial, utilizando bombillos de 100 vatios para cada galpón.
3.7.7 Manejo de la densidad de las aves. Una vez llegadas las aves al galpón, se dividieron en lotes de 300 pollitos para el grupo testigo y experimental, respectivamente, ocupando cada lote un espacio de $10 \mathrm{~m}^{2}$ durante la primera semana. En la segunda semana se amplió el espacio del galpón a $20 m^{2}$ para una densidad de $15 \mathrm{aves} / \mathrm{m}^{2}$ en cada lote hasta la tercera semana, donde se ocupó todo el galpón ($40 \mathrm{~m}^{2}$), manejando una densidad de $7.5 / \mathrm{m}^{2}$ (Véase el Anexo E).
3.7.8 Plan de vacunación. El plan de vacunación se realizó de acuerdo con la base de datos de la granja, teniendo en cuenta la zona y época del año (Véase el Anexo F).

Edad	Vacuna	Vía de aplicación
8 días	New castle B.	Ocular
8 días	Gumboro	Nasal
21 días	New castle la sota	Ocular

3.7.9 Pesajes. Estos se hicieron tomando el peso de cada repetición por tratamiento. Se tomaron cinco aves macho y cinco hembras marcadas (Véase Anexo I).
3.7.10 Manejo del alimento. Cada lote fue alimentado en dos fases. Los alimentos utilizados en esta investigación tuvieron la misma presentación (crombo). Al grupo testigo se le suministró el alimento inicial en forma de harina desde el día 1 hasta el día 21. En la segunda fase se utilizó un alimento final o engorde en forma de crombo a partir del dia 22 hasta el día 42 (Véase el Anexo I). Las características bromatológicas de cada alimento son:

	Alimento inicial (\%)	Alimento final (\%)
Proteína (mínimo)	21.00	19.00
Humedad (máximo)	13.00	13.00
Grasa (mínimo)	2.00	2.50
Fibra (máximo)	5.00	5.00
Cenizas (máximo)	8.00	8.00

Al grupo experimental, a diferencia del grupo testigo se le suministró alimento en forma de crombo desde el primer día hasta el dia 21; para la segunda fase, es decir, a partir del dia 22 se utilizó un alimento final o engorde en forma de crombo, suministrándose alimento final e inicial con intervalos de tres dias cada uno hasta el sacrificio, como se ilustra a continuación:

F: Final
I: Inicial
3.7.11 Mortalidad. Se registraron las aves muertas durante todo el período (Ver Anexo J).
3.7.12 Manejo del agua de bebida. El agua que se le suministró a los pollos es de buena calidad, proveniente de la red del acueducto municipal.

4. RESULTADOS Y ANÁLISIS

4.1 RESULTADOS

Cuadro 1. Consumo promedio de alimento durante seis semanas de edad en el lote experimental.

Etapas	Edad (semanas)	Consumo de alimento semanal (Kg.)		Consumo por ave (gr.)		
	Semanal					
Inicial	1	30	30	Día	Semana	Acumulado
	2	65	95	14,28	100	100
	3	95	190	30,9	216,6	316,6
Final	4	240	430	114,2	316,6	633,2
	5	300	730	142,8	1000	1433,2
	6	300	1030	142,8	1000	3433,2

Cuadro 2. Consumo promedio de alimento durante seis semanas de edad en el lote testigo.

Etapas	Edad (semanas)	Consumo de alimento semanal (Kg.)		Consumo por ave (gr.)		
		Acumulado	Día	Semana	Acumulado	
Inicial	1	30	30	14,28	100	100
	2	65	95	30,9	216,6	316,6
	3	95	190	45,2	316,6	633,2
Final	4	280	470	133,3	933,3	1566,5
	5	300	770	142,8	1000	2566,5
	6	380	1050	133,3	933,3	3499,8

Cuadro 3. Peso promedio semanal y conversión alimenticia durante seis semanas de edad en el lote experimental.

Etapa	Edad (semana)	Peso corporal por ave (gr.)	Ganancia de peso diario (gr.)	Conversión alimenticia acumulada
Inicial	1	165,25	17,89	0,79
	2	353,5	26,89	1,14
	3	625,75	38,9	1,16
Final	4	1183	79,6	1,43
	5	1737,75	79,25	1,80
	6	2288,5	76,67	1,81

Cuadro 4. Peso promedio semanal y conversión alimenticia durante seis semanas de edad en el lote testigo.

Etapa	Edad (semana)	Peso corporal por ave (gr.)	Ganancia de peso diario (gr.)	Conversión alimenticia acumulada
Inicial	1	165	17,85	0,8
	2	353,5	26,92	1,14
	3	621,5	38,28	1,18
Final	4	1167	77,92	1,71
	5	1747,5	82,92	1,72
	6	2244,5	71	1,87

Cuadro 5. Mortalidad y aves descartadas durante seis semanas de edad en el lote testigo.

Etapa	Edad (sem.)	Aves muertas	Aves descart.	Total mortalidad y descarte								
				Mort./sem.		Desc /sem.		Mort./acum.		Desc./acum.		Saldo aves
				No. aves	\%	No. aves	\%	No. aves	\%	No. aves	\%	
Inic.	1	2	0	1	0,66	0	0	2	0,66	0	0	298
	2	1	0	1	0,33	0	0	3	0,99	0	0	297
	3	1	0	1	0,33	0	0	4	1,32	0	0	296
Final	4	0	0	0	0,00	0	0	0	0,00	0	0	296
	5	2	0	2	0,66	0	0	6	1,98	0	0	294
	6	1	0	1	0,33	0	0	7	2,31	0	0	293

Cuadro 6. Mortalidad y aves descartadas durante seis semanas de edad en el lote experimental.

Etapa	Edad (sem.)	Aves muertas	Aves descart.	Total mortalidad y descarte								
				Mort./sem.		Desc/sem.		Mort./acum.		Desc./acum.		Saldo aves
				No. aves	\%	No. aves	\%	No. aves	\%	No. aves	\%	
Inic.	1	0	0	0	0,00	0	0	0	0,00	0	0	300
	2	0	0	0	0,00	0	0	0	0,00	0	0	300
	3	1	0	1	0,33	0	0	1	0,33	0	0	299
Final	4	0	0	0	0,00	0	0	0	0,00	0	0	299
	5	1	0	1	0,33	0	0	2	0,66	0	0	298
	6	2	0	2	0,66	0	0	4	1,32	0	0	296

Cuadro 7. Rendimiento en canal de las seis semanas de edad en el lote experimental.

Peso vivo (gr.)	Peso vacío (gr.)	\% Rendimiento en canal	Peso con vísceras (gr.)
2288,5	1639,5	71,6	1913,5

Cuadro 8. Rendimiento en canal de las seis semanas de edad en el lote testigo.

Peso vivo (gr.)	Peso vacío (gr.)	\% Rendimiento en canal	Peso con vísceras (gr.)
2244,5	1595,5	71,09	1869,5

Figura 1. Ganancia de peso semanal

4.1.1 Factor de eficiencia europea (F.E.E.P.) galpón 3A (Lote experimental). Sistema de alimentación alternada.
F.E.E.P. $=\frac{\frac{\text { Peso promedio }}{\text { Edad al sacrificio }}}{\text { Conversión }} x$ Super vivencia $x 100$
F.E.E.P. $=\frac{\frac{2.288,5}{42}}{1,75} \times 98,6 \times 100$
F.E.E.P. $=307$
4.1.2 Factor de eficiencia europea (F.E.E.P.) galpón 3B (Lote testigo). Sistema de alimentación tradicional.
F.E.E.P. $=\frac{\frac{\text { Peso promedio }}{\text { Edad al sacrificio }}}{\text { Conversión }} \times$ Super vivencia $\times 100$
F.E.E.P. $=\frac{\frac{2.244,5}{42}}{1,87} \times 97,6 \times 100$
F.E.E.P. $=278,9$

Cuadro 9. Costos de producción.

Variables	Lote A (experimental)	Lote B (testigo)
Costo pollitos	270.000	270.000
Costo alimentos	832.000	864.000
Costo de cama	15.000	15.000
Costo drogas y vacunas	100.000	100.000
Costo transporte	30.000	30.000
Costo mano de obra	60.000	60.000
Costo agua y energía	20.000	20.000
Depreciación de construcción	33.000	33.000
Depreciación de equipo	6.600	6.600
Costo de sacrificio	45.000	45.000
Costo total	1.411 .600	1.443 .600
Valor canal	$\mathbf{1 . 8 4 4 . 1 0 9}$	1.776 .429
Utilidad	432.509	332.829

4.1.3 Factor costo beneficio lote experimental.

$B / C=\frac{\text { Valor actualizado de los ingresos (FAC. 0,36) }}{\text { Valor actualizado de los costos (FAC. } 0,36 \text {) }}$

Ingresos $=\frac{1^{\prime} 844.109}{(1+0,36)}=\frac{1^{\prime} 844.109}{1,36}=1^{\prime} 355.962,5$

Costo $=\frac{1^{\prime} 411.600}{(1+0,36)}=\frac{1^{\prime} 411.600}{1,36}=1^{\prime} 037.941,176$
$B / C=\frac{l^{\prime} 355.962,5}{1^{\prime} 037.941,176}$
$B / C=1,306$

4.1.4 Factor costo beneficio lote testigo.

$B / C=\frac{\text { Valor actualizado de los ingresos (FAC. 0,36) }}{\text { Valor actualizado de los costos (FAC. } 0,36 \text {) }}$

Ingresos $=\frac{1^{\prime} 776.429}{(1+0,36)}=\frac{1^{\prime} 776.429}{1,36}=1^{\prime} 306 \cdot 197,794$

Costo $=\frac{1^{\prime} 443.600}{(1+0,36)}=\frac{1^{\prime} 443.600}{1,36}=1^{\prime} 061 \cdot 470,588$
$B / C=\frac{1 ' 306.197,794}{1^{\prime} 061.470,588}$
$B / C=1,23$

4.2 ANÁLISIS

El consumo total por ave fue de $3.499,8$ gr. y $3.433,2$ gr. respectivamente para cada uno de los tratamientos, notándose una diferencia de 66,6 gr. por pollo, lo que nos muestra un mayor consumo en el lote testigo con respecto al lote experimental (Véase cuadro 1 y 2).

La mortalidad para cada tratamiento fue de $0,99 \%$, lo que nos da a entender que no hubo diferencia en lo referente a este parámetro en la fase final. La mortalidad se presentó debido a consecuencias de ahogamiento por altas temperaturas en las horas picos (11:00 a.m. - 3:00 p.m.) (Véase cuadros 5 y 6).

El peso promedio de las aves no registro diferencia significativa para los dos tratamientos en ninguna semana. (Véase cuadros 3 y 4).

Teniendo en cuenta los parámetros consumo de alimento y peso corporal, se pudieron establecer para cada lote las correspondientes conversiones alimenticias, como lo muestran los cuadros 3 y 4, que registran una mejor conversión alimenticia para el lote experimental. Lo anterior es corroborado por los resultados arrojados al realizar los cálculos del factor de eficiencia europea (F.E.E.P.), ya que este índice agrupa los parámetros de mayor incidencia en los rendimientos como son peso promedio, conversión, supervivencia y dias de engorde.

Los rendimientos en canal, como lo muestran los cuadros 7 y 8 , presentaron igual porcentaje en el lote A (experimental) y el lote B (testigo), considerando que sólo se obtuvieron por tratamiento sin hacer inflexión estadística sobre ellos.

En lo concerniente a la evaluación económica, con base en el costo de las variables de producción, los resultados obtenidos muestran una mayor utilidad en el lote experimental.

No se midió individualmente la conversión y las otras variables, por lo tanto no se puede hacer la t de Student para ellos.

Al hacer el análisis de t de Student, a la sexta semana de edad de los pollos, se encontró diferencia altamente significativa con el tabulado.

CONCLUSIONES

A diferencia de los sistemas de alimentación tradicionales, el sistema de alimentación alternada nos muestra otra alternativa de manejo en las granjas de la región, ya que nos brinda un buen comportamiento productivo del pollo, una mejor eficiencia alimenticia y un rendimiento en canal aceptable, generando mayores ingresos al avicultor y un pollo de buena calidad al consumidor.

La rentabilidad del lote experimental es mayor que la del lote testigo, debido a la mejor ganancia de peso, lo cual es altamente significativo para esta zona de clima cálido.

El manejo de este sistema de alimentación alternada es una nueva alternativa para mejorar la producción de pollos de engorde en climas cálidos.

Con el sistema de alimentación alternada se ahorra alimento en comparación con el sistema de alimento tradicional, disminuyendo los costos de producción.

RECOMENDACIONES

- Incentivar a los productores de la región a que pongan en práctica este nuevo sistema de alimentación, ya que ofrece mayor rentabilidad que el sistema de alimentación tradicional.
- Promover entre los pequeños y medianos productores de la región, la afiliación a gremios o entidades que propendan por el mejoramiento de sus condiciones socioeconómicas.
- Demostrar al pequeño y mediano productor que con el sistema de alimentación alternada se obtiene un pollo de buen tamaño corporal y buen rendimiento en canal, apetecible por el consumidor.
- Las técnicas desarrolladas y probadas en esta investigación, son un pilar fundamental para dar inicio a otros proyectos de alimentación alternada en pollos de engorde en la región.

BIBLIOGRAFÍA

AGRIBANDS - PURINA COLOMBIA S.A. En: Folleto Plan Purina para Pollos de Engorde. Bogotá. 1996. 27 p.

BUTCHER, Gary D. y MILES, Richard. En: Revista Industria Avicola. Vol. 44. No. 4. 1997.34 p .

CAMPILLO CONTRERAS, Eduardo y LÓPEZ SALCEDO, Esteban. Manejo de stress calórico en pollo de engorde. Sincelejo, 1999. Pág. 78 - 88. Tesis (Zootecnia). Universidad de Sucre. Facultad de Ciencias Agropecuarias.

CUARON. Seminario Internacional "Alternativas en Producción y Comercialización para la Porcicultura". Santafé de Bogotá. Julio 14-23 de 1995. 30-32 p.

ENCICLOPEDIA PRÁCTICA DE LA AGRICULTURA Y LA GANADERÍA. Editorial Océano/Centrum. Barcelona, España. 1999.

FAO. La Alimentación de las Aves en Países Tropicales y Subtropicales . En: Cuadernos de Fomento Agropecuario.. No. 82. Roma. 1965.

GOLDEN, E.F. Broilers: Production and Management. Editorial Albatros S.R.L. 1976. 105 p.

PORTSMOUTH, Jhon. Avicultura Práctica. Compañia Editorial Continental S.A. México. 1979. 114 p.

PURINA COLOMBIANA S.A. En: Folleto Línea Industrial Campero. Bogotá. 4 p.

Anexo A. Localización de la zona de estudio.

Anexo B. Manejo de cortinas.

Edad (días)	Manejo cortinas	Frecuencia
1 a 7	Totalmente arriba	24 horas
8 a 15	Parcialmente arriba	7:00 a.m. $-6: 00$ p.m.
8 a 15	Totalmente arriba	6:00 p.m. $-6: 00$ a.m.
16 a 28	Abajo	$7: 00$ a.m. $-6: 00$ p.m.
16 a 28	Parcialmente arriba	$7: 00$ p.m. $-6: 00$ a.m.
28 - sacrificio	Totalmente abajo	24 horas

Anexo C. Manejo de equipos.

Edad (días)	Tipo de comedero	Cantidad	Tipo de bebedero	Cantidad
$1-7$	Bandeja plástica	4	Manual	4
$8-20$	Manual de tolva	4	Automático	3
21 - sacrificio	Manual de tolva	10	Automático	6

Anexo D. Manejo de criadoras.

Edad (días)	Manejo criadoras	Frecuencia
1 a 7	Encendida	24 horas
8 a 15	Apagada	$7: 00$ a.m. $-6: 00$ p.m.
8 a 15	Encendida	$6: 00$ p.m. $-6: 00$ a.m.

Anexo E. Manejo del espacio o densidad.

Edad (días)	Densidad
$1-7$	$30 \mathrm{pollos} / \mathrm{m}^{2}$
$8-15$	$20 \mathrm{pollos} / \mathrm{m}^{2}$
$16-20$	$15 \mathrm{pollos} / \mathrm{m}^{2}$
21 - sacrificio	$8 \mathrm{pollos} / \mathrm{m}^{2}$

Anexo F. Plan de vacunación.

Edad (días)	Vacuna	Vía de aplicación	Fecha
4	Bronquitis	Ocular	$30-03-2002$
8	Newcastle B1	Ocular	$03-04-2002$
8	Gumboro	Nasal	$03-04-2002$
23	Newcastle La Sota	Agua de bebida	$17-04-2002$

Anexo G. Principales índices de rendimiento.

Peso promedio $=\frac{\text { Kilos de pollo vendidos }}{\text { No. de pollos al final }}$
Consumo promedio $=\frac{\text { Kilos de alimento consumido }}{\text { No. de pollos al final }}$
Mortalidad (\%) $=\frac{\text { No. de pollos muertos }}{\text { No. de pollos iniciados }} \times 100$
Supervivencia $=\frac{\text { No. de pollo vendidos }}{\text { No. de pollos inicial }} \times 100$
Conversión $=\frac{\text { Consumo alimento kilos/aves }}{\text { Peso vivo promedio kilos/aves }}$
peso promedio
Factor deEficiencia Europeo (F.E.E.P.) $=\frac{\text { edad al sacrificio }}{\text { Conversión }} \times$ Supervivencia $\times 100$

Anexo H. Cálculo de la ganancia de peso.

Experimental

\[

\]

Testigo

$2230-165,5=2064,5$
$2270-164,5=2105,5$
$2284-165=2119$
$2230,5-165,5=2065$
$2222,5-164=2058,5$
$2234-165,5=2068,5$
$2242,5-165=2077,5$
$2287,5-165=2122,5$
$2221,5-165=2056,5$
$2222,5-165=\underline{2057.5}$
$\Sigma \mathrm{GP}=20795$

Cálculo de la te Student.

$$
\begin{array}{ll}
8=2113,25 & 8_{2}=2079,5 \\
\mathrm{~S}_{1}{ }^{2}=30,7 & \mathrm{~S}_{2}^{2}=24,69 \\
\Sigma X^{2}=46374282,75 & \Sigma X^{2}=44928902
\end{array}
$$

$$
t=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}=\frac{2113,25-2079,5}{\sqrt{\frac{30,7}{10}+\frac{24,69}{10}}}=\frac{33,75}{\sqrt{\frac{55,39}{10}}}=\frac{33,75}{\sqrt{5,539}}=\frac{33,75}{2,35}=14,36
$$

$$
t=14,36
$$

$$
g l=\left(n_{1}-1\right)+\left(n_{2}-1\right)
$$

$$
g l=(10-1)+(10-1)
$$

$$
g l=9+9
$$

$$
\mathrm{gl}=18
$$

$$
\mathrm{gl}=2,101
$$

Anexo I. Programa de alimentación.

Edad (días)	Tipo de alimento	Consumo/pollo (Kg.)
$1-27$	Nutripollito (inicial)	1.6
27 - sacrificio	Nutriengorde (final)	2.0

Anexo J. Control de mortalidad y descarte.

	Mortalidad y descarte									Total semana					Total acumulado				
(semana)	V	S		D	L	M		M	J		Mort.	\%	Des.	\%	Mort.	\%	Des.	\%	Saldo aves
1																			
2																			
3																			
4																			
5																			
6																			

$$
\begin{aligned}
& \text { EVIDENGLA } \\
& \text { FOTOGRAREAM }
\end{aligned}
$$

Foto 2. Distribución de comederos y bebederos

Foto 3. Distribución de comederos y bebederos

Foto 4. Pesaje.

Foto 5. Rendimiento en canal

Foto 6. Rendimiento en canal.

