
"Únicamente los autores son responsables de las ideas expuestas en el
presente trabajo"

DETERMINACIÓN DE LAS CARGAS CONTAMINANTES

 POR VERTIMIENTOS PUNTUALES DE AGUAS RESIDUALES URBANAS EN LA CUENCA BAJA ARROYO GRANDEWLMER CHIMA MERCADO
LEOBALDO PALACIO BARBOZA

UNIVERSIDAD DE SUCRE
FACULTAD DE INGENIERİA
DEPARTAMENTO DE INGENIERİA AGRICOLA
SINCELEJO
2001

DETERMINACIÓN DE LAS CARGAS CONTAMINANTES POR VERTIMIENTOS PUNTUALES DE AGUAS RESIDUALES URBANAS EN LA CUENCA BAJA ARROYO GRANDE

WILMER CHIMA MERCADO

LEOBALDO PALACIO BARBOZA

Trabajo de Grado para optar al Título de Ingeniero Agrícola

Director
CARLOS VERGARA GARAY
Ing. Agrícola - Especialista en Ciencias Ambientales
Profesor Asistente Universidad de Sucre

Asesor

TULIO RUIZ ALVAREZ
Ing. Químico - Especialista en Gerencia Ambiental Coordinador Proyecto Tasas Retributivas

CARSUCRE

UNIVERSIDAD DE SUCRE FACULTAD DE INGENIERİA DEPARTAMENTO DE INGENIERİA AGRICOLA SINCELEJO 2001

\qquad
\qquad
\qquad

Presidente del Jurado

Jurado

Jurado

Sincelejo, 2001

DEDICATORIA

Wilmer

Leobaldo

AGRADECIMIENTOS

Los autores expresan sus más sinceros agradecimientos a:

CARLOS VERGARA GARAY, Ingeniero Agrícola, Especialista en Ciencias Ambientales, Profesor de la Universidad de Sucre, por haber accedido a ser Director del presente Trabajo de Grado.

TULIO RUIZ AL VAREZ, Ingeniero Químico, Especialista en Gerencia Ambiental, Coordinador Proyecto Tasas Retributivas, CARSUCRE, por sus invaluables aportes durante el proceso de organización de este trabajo.

GUSTAVO BARROS CANTILLO, Ingeniero Agrícola, Especialista en Ciencias Ambientales, Decano de la Facultad de Ingeniería por su apoyo y colaboración.

JORGE LUIS MARTÍNEZ SIERRA, Ingeniero Agrícola, Funcionario de CARSUCRE, por su apoyo, colaboración y acompañamiento tanto en el trabajo de campo, como en las actividades de oficina.

WILL/ LA FORIE y Otros, Estudiantes. Tesistas de la Universidad del Norte (Barranquilla), por sus aportes a este trabajo, en la realización de las pruebas de laboratorio.

JOSE MEZA HERAZO, JORGE LUIS GARCIA;' Funcionarios de CARSUCRE, por su apoyo y acompañamiento en las actividades de socialización y divulgación del proyecto Tasas Retributivas por contaminación hídrica.

JUSTO FUENTES CUELLO, Ingeniero Agrícola, profesor Universidad de Sucre, por su colaboración y apoyo durante la realización del análisis estadístico y organización de este trabajo.

ISMAEL SANDOVAL ASIA, Ingeniero Agrícola, profesor Universidad de Sucre, por sus aportes y servicios prestados para la realización de este trabajo.

DANYS MENDOZA, Estudiante Tesista, Biología, Universidad de Sucre, por sus invaluables aportes durante la realización de este trabajo.

AGUSTÍN ROMERO, Estudiante Tesista, Ingeniería Agrícola, Universidad de Sucre, por sus aportes bibliográficos referentes al presente trabajo.

JOSE VILLAREAL, Estudiante Tesista, Ingeniería Agrícola, Universidad de Sucre, por su colaboración durante la fase de toma y análisis de muestras.

HAROLDO SIERRA, Funcionario de CARSUCRE Por el aporte videográfico, en la presentación de este trabajo de grado.

EDITH GUZMAN, Bióloga, Universidad de Sucre, por su apoyo y colaboración durante la realización de la organización de este trabajo.

SANDRA PEREZ, por su colaboración durante la trascripción de este trabajo.

A la CORPORACIÓN AUTÓNOMA REGIONAL DE SUCRE"CARSUCRE".

Por la oportunidad brindada

A la UNIVERSIDAD DE SUCRE. Por los conocimientos adquiridos durante el proceso de formación integral de profesionales idóneos.

AL ESTADO COLOMBIANO. Por permitir educarnos en una institución universitaria de carácter publico.

CONTENIDO

Pág.
INTRODUCCIÓN 16
1 CARACTERISTICAS GENERALES DEL PROYECTO 19
2 AREA DE JURISDICCIÓN DE CARSUCRE 20
3 OBJETIVOS DEL TRABAJO 27
3.1 Objetivo general 27
3.2 ObJETIVOS ESPECÍFICOS 27
4 DESCRIPCIÓN DEL ÁREA DE ESTUDIO 29
4.1 CUENCA BAJA ARROYO GRANDE 29
4.2 SISTEMAS DE TRATAMIENTO DE AGUAS RESIDUALES 31
4.2.1 MUNICIPIO DE LOS PALMITOS 31
4.2.2 MUNICIPIO DE SINCÉ 34
4.2.2.1 Laguna de oxidación Sincé 1 34
4.2.2.2 Laguna de oxidación Sincé 2 34
4.2.3 MUNICIPIO DE BETULIA 37
4.2.3.1 Laguna de oxidación Betulia 1 37
4.2.3.2 Laguna de oxidación Betulia 2 37
5 REVISIÓN DE LITERATURA 40
5.1 NATURALEZA DE LAS AGUAS RESIDUALES 40
5.1.1 Origen de las aguas residuales 40
5.1.2 Transporte de aguas residuales 41
5.1.3 Composición de aguas residuales 43
5.1.4 Características Típicas de las aguas residuales 44
5.2 SISTEMAS DE TRATAMIENTO DE AGUAS RESIDUALES 50
5.2.1 Lagunas de Estabilización 51
5.2.1.1 Lagunas anaerobias (Laguna de oxidación) 52
5.2.1.2 Lagunas facultativas 52
5.2.1.3 Lagunas de maduración: 52
5.2.2 Caudales de Aguas Residuales 53
5.2.2.1 Cálculo de caudal aguas residuales 54
5.2.3 Disposición de efluentes tratados 55
5.2.4 Control de calidad de los vertimientos líquidos a cuerpos de aguas superficiales 56
5.3 CONTAMINACION POR MATERIA ORGANICA Y SOLIDOS EN SUSPENSION 57
5.4 CARGAS CONTAMINANTES POR VERTIMIENTOS DE AGUAS RESIDUALES 58
5.4.1 Demanda Bioquímica de Oxígeno - DBO 59
5.4.2 Demanda Química de Oxígeno - DQO- 59
5.4.3 Sólidos Suspendidos Totales -SST- 59
5.5 TASAS RETRIBUTIVAS POR CONTAMINACIÓN HÍDRICA 60
5.6 LEGISLACIÓN AMBIENTAL VIGENTE 61
5.6.1 Constitución Política de Colombia 61
5.6.2 Decreto No 1594 del 26 de junio de 1984 61
5.6.3 Ley 99 de 1993. 62
5.6.4 Decreto 901 del 1 de abril de 1997. 62
6 PLANTEAMIENTO METODOLÓGICO 65
6.1 REVISIÓN DE LA INFORMACIÓN EXISTENTE 65
6.1.1 Aspectos Físicos de la Cuenca Baja Arroyo Grande 65
6.1.2 Aspectos Socioeconómicos Municipios de Los Palmitos, Sincé y Betulia 66
6.2 IDENTIFICACIÓN DEL COMPONENTE AMBIENTAL 67
6.2.1 Actividades de Campo 67
6.2.1.1 Estaciones de muestreo 67
6.2.1.2 Registro de Parámetros Físico químicos 68
6.2.1.3 Preservación de las muestras 69
6.2.1.4 Medición de caudales de aguas residuales municipales 71
6.2.1.5 Identificación del componente biótico área de influencia del Proyecto 71
6.2.2 Pruebas de laboratorio 72
6.2.2.1 Análisis fisicoquímicos Aguas Residuales 72
6.2.2.2 Análisis de Grasas y/o Aceites 73
6.2.3 Actividades de oficina 73
6.2.3.1 Caracterización de aguas residuales urbanas 73
6.2.3.2 Determinación de la carga contaminante vertida en la Cuenca Baja Arroyo Grande 74
6.2.4 Cartografía 75
6.3 ANÁLISIS DE LA INFORMACIÓN 75
7 RESULTADOS Y ANÁLISIS 76
7.1 ASPECTOS FÍSICOS DE LA CUENCA BAJA ARROYO GRANDE 76
7.1.1 Geología 76
7.1.2 Geomorfología 77
7.1.3 Fisiografía. 78
7.1.4 Suelos 79
7.1.5 Clima 80
7.1.6 Zonas de vida. 80
7.1.7 Hidrografía 81
7.2 ASPECTOS SOCIOECONOMICOS DE LOS MUNICIPIOS ASENTADOS EN EL AREA DE ESTUDIO 82
7.2.1 Información social 82
7.2.2 Información económica 88
7.3 COMPONENTE BIÓTICO ÁREA DE INFLUENCIA SISTEMA DE TRATAMIENTO AGUAS RESIDUALES 90
7.3.1 Vegetación 90
7.3.2 Fauna 91
7.4 DETERMINACION DE LACARGA CONTAMINANTE VERTIDA EN LA CUENCA BAJA ARROYO GRANDE 93
7.4.1 Caudales de Aguas Residuales 93
7.4.2 Caracterización Aguas Residuales Urbanas 96
7.4.3 Calculo de la Carga Total Contaminante (DBO O_{5} SST) Vertida en la Cuenca Baja Arroyo Grande 103
8 CONCLUSIONES 107
9 RECOMENDACIONES 109
REFERENCIAS BIBLIOGRAFICAS 112
ANEXOS 114

LISTADO DE CUADROS

Pág.
Cuadro 1. Arroyos de importancia relacionados con los municipios que
conforman la Cuenca Baja Arroyo Grande..................................... 31

Cuadro 2. Composición típica del agua residual cruda....................................... 43

Cuadro 3. Parámetros analizados para la caracterización de aguas
residuales.. 45

Cuadro 4. Concentraciones máximas permisibles para verter a un cuerpo de agua o red de alcantarillado.

56

Cuadro 5. Equipo usado Parámetros Registrados "in situ".................................. 68

Cuadro 6. Técnicas de análisis aguas residuales domestica

LISTADO DE TABLAS

Pág.
Tabla 1. Vegetación asociada al área de influencia de los sistemas de tratamiento de aguas residuales. 90
Tabla 2. Fauna asociada al área de influencia de los sistemas de tratamiento de aguas residuales 91
Tabla 3. Resultado de las mediciones "in situ" caudales de aguas residuales Municipio de Los Palmitos 93
Tabla 4. Resultado de las mediciones "in situ" caudales de aguas residuales Municipio de Sincé 94
Tabla 5. Resultado de las mediciones "in situ" caudales de aguas residuales Municipio de Betulia 95
Tabla 6. Caudales promedio de aguas residuales municipales. 95
Tabla 7. Resultados diarios de parámetros "in situ" y análisis de laboratorio de las
A. R. Afluentes a los sistemas de tratamiento municipal. 96
Tabla 8. Características fisicoquímicas de las aguas residuales vertidas luego de tratamiento primario a los cuerpos de aguas del área de interés. 97
Tabla 9. Concentraciones promedios de aguas residuales urbanas afluentes a los sistemas de tratamiento municipal 100
Tabla 10. Características promedio de aguas residuales vertidas a los cuerpos de agua superficiales. 101
Tabla 11. Calculo de la carga contaminante diaria Tasas Retributivas en jurisdicción de CARSUCRE 103
Tabla 12. Determinación de las cargas contaminantes vertidas en la cuenca baja Arroyo Grande 104

LISTADO DE FIGURAS

Pág.

Figura 1. Croquis Lagunas de Oxidación del municipio de Los Palmitos......... 33
Figura 2. Croquis de los sistemas de tratamiento del municipio de Sincé....... 36
Figura 3. Croquis de los sistemas de tratamiento del municipio de Betulia...... 39

Figura 4. Principales fuentes de aguas residuales municipales......................... 42
Figura 5. Tipos de lagunas más comunes... 52
Figura 6. Elementos hidráulicos de un canal de sección circular...................... 55

Figura 7. Flujograma de actividades realizadas durante el monitoreo ambiental a los sistemas de tratamiento de aguas residuales........................... 70

Figura 8. Variación diaria de los caudales de Aguas Residuales Urbanas....... 93

Figura 9. Variación de los parámetros "in situ" y análisis de laboratorio............ 98

Figura 10. Resultados \% remoción de los sistemas de tratamiento................. 103
Figura 11. Determinación de las cargas contaminantes de origen municipal
vertidas en la cuenca baja Arroyo Grande.................................. 104
Figura 12. Total cargas contaminantes vertidas a los cuerpos de aguas superficiales del área de estudio 105

Figura 13. Porcentaje en carga total contaminante por fuente regulada........... 106

LISTADO DE MAPAS

Pág.

Mapa 1. Localización y área de jurisdicción de CARSUCRE......................... 20

Mapa 2. Cuenca Arroyo Grande 23
Mapa 3. Ubicación Cuenca Baja Arroyo Grande 25
Mapa 4. Cuenca Baja Arroyo Grande 30

LISTADO DE ANEXOS

Pág.
Anexo A. Registro de Datos Recolectados en Campo municipios de Los Palmitos, Sincé, Betulia, y Galeras115
Anexo B. Resultados de los Análisis Realizados en el Laboratorio de Aguas Universidad del Norte 139Resultados Análisis de Laboratorio - PROAMBIENTE -
Anexo C. Materiales y Equipos utilizados Durante el Monitoreo Ambiental Realizado a los Sistemas de Tratamiento de Aguas Residuales144
Anexo D. Cronograma de Actividades del Proyecto de Grado 147
Anexo E. Registro Fotográfico 149

Abstract

RESUMEN Las fuentes de aguas residuales urbanas en la Cuenca Baja Arroyo Grande, tienen su principal origen en los vertimientos puntuales de aguas residuales domesticas procedentes de los municipios asentados en su área, aportando altas cargas contaminantes; Así mismo estas cargas colocan en riesgo de contaminación a las aguas subterráneas. Considerando tan variadas fuentes de contaminación es importante determinar cuales son las que más contribuyen en la carga contaminante. Los datos obtenidos permitirán conocer a mayor profundidad la situación imperante, tanto en el aspecto físico como socioeconómico a fin de proponer soluciones viables. Esta información puede ser usada por organismos reguladores para el desarrollo de planes estratégicos de manejo de cuencas hidrográficas. Los objetivos del presente trabajo son la determinación de las cargas contaminantes por vertimientos puntuales en la Cuenca Baja Arroyo Grande a través de la caracterización de las aguas residuales urbanas. Se analizaron 15 parámetros en cada uno de los puntos de muestreos descritos (se pueden ver en la Fig. ${ }^{\circ}$ 7) en total se realizaron 750 análisis. La localización de los centros urbanos de los municipios, concentra el vertimiento de aguas residuales tratadas en los siguientes cuerpos receptores; Arroyo Caracolí, Arroyo La Bodega, Arroyo La Ceja, Arroyo Grande y Arroyo Quita Calzón. El caudal total de aguas residuales generadas en la Cuenca Baja Arroyo Grande es de $24.6 \mathrm{~L} / \mathrm{seg}$, con una

Abstract

Residual water sources the urban in the River basin Low Great Stream, have their main origin in the precise residual water pourings domestic servants, coming from the municipalities seated in their territory, contributing high polluting loads; these loads place in risk of contamination to underground waters. Considering so varied contamination sources it is important to determine as they are those that contribute more in the polluting load. The obtained data will allow to know greater depth the prevailing situation, as much in the physical aspect as socioeconomic in order to propose viable solutions. This information can be used by regulating organisms for the development of strategic plans of handling of hydrographic river basins. The objectives of the present work are the determination of the polluting loads by precise pourings in the river basin low great stream through the characterization of urban residual waters. 15 parameters in each one of the points of described samplings were analyzed (they are possible to be seen in Fig. $N^{\circ} 7$) altogether were made 750 analyses. The location of the urban centers of the municipalities, concentrates residual the water pouring treated in the following receiving bodies; Caracolí stream, Stream the Warehouse, Stream the Eyebrow, Great Stream and Exempt Stream. Trousers residual the total water volume generated in the River basin Low Great Stream is of $24,6 \mathrm{~L} / \mathrm{seg}$, with a generated total load of $50694.85 \mathrm{Kg}_{\left(\mathrm{DBO}_{5}\right) /}$ year y $60316.25 \mathrm{Kg}(\mathrm{SST}) /$ year.

INTRODUCCIÓN

En la concepción clásica del problema de la contaminación del agua, los ríos y los arroyos son considerados como los receptores naturales de aguas residuales; con su correspondiente carga contaminante.

Estas cargas ó concentraciones de contaminantes son objeto de regulación por parte de entidades con base en las Leyes, Decretos y Normas para establecer la calidad apropiada del agua de acuerdo a los diferentes usos aplicables a ella asi como a su vertimiento; de igual forma estas concentraciones de contaminantes ponen en situación de riesgo de contaminación a las aguas subterráneas.

Las normas de calidad para los efluentes sirven como criterio para mantener en condiciones aceptables a los cuerpos de aguas estudiados.

Hoy en dia esta claro que es necesario controlar eficazmente todas aquellas contaminaciones perfectamente evitables, mediante el uso de multitud de estrategias, llegándose al extremo de aplicar el axioma "quien contamina paga", es decir al pago de tasas retributivas por vertimientos puntuales.

Como parte de las estrategias a realizar dentro del proceso de implementación del Decreto 901/97 en jurisdicción de CARSUCRE, se hace necesario la ejecución de una serie de actividades que generen información de base (Diagnostico simplificado biofísico y socioeconómico) que permitan evaluar el grado de contaminación que cada fuente regulada produce con sus descargas a los cuerpos de aguas del área de interés ambiental, por tal motivo se diseño y estableció un procedimiento de trabajo orientado a la identificación de la línea base ambiental de la Cuenca Baja Arroyo Grande; con el propósito de determinar las cargas contaminantes generadas por los centros urbanos - industriales que la integren.

Los cálculos necesarios para la determinación de estas cargas se harán siguiendo las normas establecidas por el Ministerio del Medio Ambiente y aplicadas por la Corporación Autónoma Regional de Sucre CARSUCRE en las cuencas de su jurisdicción, con el objeto de implementar las Tasas retributivas por la utilización directa ó indirecta de los cuerpos de aguas como receptores de vertimientos puntuales.

Para el logro de los objetivos propuestos en este trabajo se diseño una metodología con el fin de organizar toda la información existente del área de interés ambiental, atendiendo a sus caracteristicas socioeconómicas y ambientales.

La identificación de las diferentes características abióticas de la Cuenca Baja Arroyo Grande, se realiza de acuerdo a la información obtenida del Instituto Geográfico Agustín Codazzi (IGAC) y estudios e investigaciones realizadas por la entidad ambiental CARSUCRE y la Universidad de Sucre.

El estudio socioeconómico se organiza partiendo de la información suministrada por las Secretarias de Planeación, Secretarias de Salud, Secretarías de Educación, UMATAS y Empresas de Servicios Públicos Domiciliarios; la información obtenida se complemento con la presentada en los Planes de Desarrollo Departamental y los Planes de Ordenamiento Territorial de los municipios estudiados.

Las características ambientales, se determinan luego del monitoreo ambiental realizado a los sistemas de tratamiento de aguas residuales, entre Octubre - 16-2000 y Noviembre - 3-2000.

Los datos registrados "in situ" y otros parámetros analizados en laboratorios se usaron para la caracterización de aguas residuales provenientes del alcantarillado municipal (Afluente), con el objetivo de estimar el estado en que llegan estas aguas residuales y su condición de salida (Efluente)

Los valores registrados se compararan con la Normatividad Colombiana establecida para estos fines, como son el Decreto 1594 / 84 del Ministerio de Salud, leyes aplicadas para las disposiciones sanitarias sobre aguas, como también de la recolección, transporte, tratamiento y disposición de efluentes.

Los resultados y análisis, se presentan en dos secciones, la primera constituye todo lo relacionado, en cuanto a información existente de las características socioeconómicas y biofísicas de la cuenca, la segunda parte comprende la identificación del componente ambiental, obtenido luego de la realización del monitoreo ambiental a cada uno de los sistemas de tratamiento de aguas residuales. En esta sección se organizan los resultados de la caracterización realizada a las aguas residuales urbanas, que generan los centros poblados y que vierten, luego de tratamiento primario a los cuerpos de agua, tributarios del Arroyo Grande y en lo que conforma el área de jurisdicción de la Cuenca Baja Arroyo Grande.

Además de proporcionar una idea general del estado actual de las cargas contaminantes vertidas a los cuerpos de aguas del área de interés ambiental, la realización de este trabajo de grado resulta de importancia, ya que permite disponer de un instrumento de aplicación de acciones, a través del cual es posible identificar y establecer prioridades de gestión, en el marco del proceso de implementación de las Tasas retributivas en jurisdicción de CARSUCRE.

1 CARACTERISTICAS GENERALES DEL PROYECTO

Este trabajo de grado, y su propósito de convertirse en un instrumento de aplicación de acciones dirigidas a mitigar el efecto causado por el vertimiento de aguas residuales hacia diversos cuerpos de aguas receptoras, se realiza en cooperación conjunta con la entidad ambiental CARSUCRE; luego de la vinculación al proyecto Tasas retributivas por vertimientos puntuales, con el objeto de realizar el trabajo especifico de Identificar la línea base ambiental ó línea de referencia del segundo tramo de la Cuenca Arroyo Grande.

No obstante, lo anterior determina que el objetivo general de este trabajo de grado, vendría a ser el trabajo especifico a realizar a la entidad ambiental CARSUCRE; por tales motivos se exponen a continuación las características generales del área de estudio del proyecto, y las actividades definidas a realizar para el logro de los objetivos propuestos en la ejecución del trabajo especifico.

Así mismo CARSUCRE, es la máxima autoridad ambiental en su jurisdicción y le corresponde aplicar y ejecutar las políticas Ambientales establecidas por el Ministerio del Medio Ambiente, como es el caso del decreto 901 del 1° de Abril de 1987, que establece el cobro de Tasas retributivas por la utilización directa o indirecta de los cuerpos de aguas como receptores de los vertimientos puntuales de aguas residuales crudas ó parcialmente tratadas.

2 AREA DE JURISDICCIÓN DE CARSUCRE

Abstract

El área de jurisdicción de la Corporación Autónoma Regional de Sucre CARSUCRE, se localiza al Norte del Departamento de sucre, entre las coordenadas geográficas; $9^{\circ} 02^{\prime}-10^{\circ} 16^{\prime}$ de Latitud Norte y $75^{\circ} 42^{\prime}-74^{\circ} 50^{\prime}$ de Longitud Oeste. Este territorio comparte limites al Nordeste con el Departamento de Bolívar, al Sur con el Departamento de Córdoba y el municipio de San Benito Abad, y al occidente con el Mar Caribe.

(Ver Mapa 1)

Según estudios realizados por CARSUCRE se han identificado una serie de cuencas hidrográficas que tienen relación directa con las cabeceras municipales, esto por los vertimientos de aguas residuales a lo largo de sus cauces naturales. Es así como se selecciona la Cuenca Arroyo Grande, definida como Área de Especial Significancia Ambiental en donde se faculta a la autoridad ambiental competente a establecer normas, que permitan mitigar el efecto causado por el vertimiento de aguas residuales crudas ó parcialmente tratadas hacia diversos cuerpos receptores.

El territorio total de la Cuenca Arroyo Grande comprende un área de 67.665,93 Has, encerradas por una divisoria de aguas ó limite de la cuenca con una longitud de 194.5 Km . El principal cuerpo de agua de la cuenca, lo constituye el Arroyo del mismo nombre; el cual nace en la confluencia de los Arroyos Caimán y San Miguel; en cercanías de la localidad de Bremen, a una altura de 167 m.s.n.m; Hace su recorrido en dirección Norte - Sur recibiendo los afluentes de otros arroyos y corrientes menores, que descargan tanto en su margen derecha como izquierda, para finalmente desembocar en la Ciénaga Santiago Apóstol a una cota de 25 m.s.n.m en jurisdicción de la Corporación Ambiental CORPOMOJANA.

MAPA N ${ }^{\circ} 1$

El área cartografiada de la cuenca, esta conformada en su división Política y Administrativa por (7) siete municipios a saber: Sincelejo, Morroa, Corozal, Los Palmitos, Betulia, Sincé y Galeras. (Ver Mapa 2)

Entre sus principales afluentes asociados con núcleos urbanos, se encuentra el Arroyo Morroa, Arroyo Caracoli, Arroyo Quita Calzón, Arroyo La Bodega, y Arroyo La Ceja entre otros.

En el estudio Estrategias para la Implementación de las tasas retributivas por vertimientos puntuales, elaborado por la subdirección de gestión ambiental de CARSUCRE, se ha identificado que las aguas de estos cuerpos superficiales, se ven afectados en forma directa por aguas residuales domesticas, provenientes de los municipios, aportando altas cargas contaminantes.

Para facilidad de este estudio y atendiendo a criterios tales como, grado de contaminación de los cauces, población en la zona, división política y administrativa, además de características ambientales significativas; la Corporación Ambiental CARSUCRE, ha establecido técnicamente la división de la cuenca en dos partes: (Ver Mapa 3)
> Tramo Alto: que lo conforman los municipios de Sincelejo, Morroa y Corozal
> Tramo Bajo: constituido por los municipios de Betulia, Sincé, Galeras y Los Palmitos, Siendo este ultimo de gran importancia por encontrarse ubicado sobre el área de recarga natural del acuifero de la formación Morroa, el cual se encuentra en riesgo de contaminación.

MAPA ${ }^{\circ} 2$

En el Tramo Alto las descargas de aguas residuales de los municipios se hacen en forma directa a los cauces de los arroyos que integran esta área, sin ningún tipo de tratamiento.

Es de anotar que de igual forma en este tramo se realiza un estudio encaminado a determinar cargas contaminantes vertidas, así como la identificación de las fuentes que las generan.

Para efectos del estudio especifico a realizar al tramo bajo de la cuenca, en adelante se denominara Cuenca Baja Arroyo Grande; constituyéndose de esta forma en el área de estudio de este trabajo de grado, igualmente se definen las actividades a realizar luego de la visita preliminar a los municipios asentados en dicha área.

Los resultados de esta visita permitieron obtener información preliminar suministrada por la Empresa de Servicios Públicos, en cuanto a cobertura de instalación de alcantarillado, así como de los tipos de tratamientos que emplean, se observo que los municipios de Los Palmitos, Betulia, Sincé y Galeras presentan sistemas de tratamiento de aguas residuales del tipo Lagunas dé Cxiáación, con características de tratamiento similares entre ellas, para tal fin es importante señalar que todas las actividades diseñadas para el Monitoreo Ambiental a estos sistemas, se hacen en forma general, buscando unificar criterios de evaluación (Ver planteamiento metodológico)

El monitoreo ambiental se refiere al grupo de actividades que proporcionen información ambiental, física, química, biológica entre otras requeridas; para el diseño de este plan se debe tener en cuenta los objetivos, la localización y él numero de muestreos, los parámetros a medir, la duración de los muestreos y análisis, los equipos a utilizar, la calibración de estos equipos los registros y análisis de datos, los informes y los costos.

MAPA N ${ }^{\circ} 3$

De otra parte los valores registrados se compararan con los establecidos en la legislación Colombiana (Decreto 1594 de 1984) del Ministerio de Salud para la conservación de la flora y la fauna.

Es importante anotar que después de realizado el monitoreo ambiental a los sistemas de tratamiento de aguas residuales de los municipios de Los Palmitos, Sincé, Betulia y Galeras; y según la información cartográfica aportada por CARSUCRE, que permitió determinar los cuerpos de aguas ó arroyos usados como receptores de aguas residuales urbanas; en cuanto a esto, se identifico que el municipio de Galeras vierte sus aguas residuales, luego de tratamiento a pequeñas corrientes superficiales, como es el caso de la Quebracia Jovilo, las cuales hacen parte de la micro cuenca del Arrcyo Anime, localizado en jurisdicción de CORPOMOJANA.

Lo anterior modifica lo planteado inicialmente, y según las recomendaciones aportadas por la Corporación Autónoma Regional de Sucre se decidió excluir prácticamente esta población, por lo que el análisis de la información bajo estas condiciones, no corresponden a los objetivos planteados en el presente trabajo; mas sin embargo en el Anexo A se incluyen los datos de campo del monitoreo ambiental y análisis de laboratorio realizados a este municipio.

3 OBJETIVOS DEL TRABAJO

3.1 Objetivo general

Identificar la línea base ambiental de la Cuenca Baja Arroyo Grande con el propósito de determinar las cargas contaminantes DBO_{5} y SST para la Implementación de la tasa retributiva por vertimientos puntuales en jurisdicción de CARSUCRE.

3.2 Objetivos específicos

- Describir los constituyentes ambientales y socioeconómicos de los municipios que realizan vertimientos puntuales de aguas residuales a los cuerpos de aguas que integran la Cuenca Baja Arroyo Grande.
- Determinar la carga contaminante total de DBO_{5} (Demanda Bioquimica de Oxígeno) y SST (Sólidos Suspendidos Totales) vertidas en la Cuenca Baja Arroyo Grande.
- Caracterizar mediante análisis físico - químico los afluentes y efluentes de los sistemas de tratamiento de aguas residuales municipios de Los Palmitos, Sincé y Betulia.
- Comparar el grado de contaminación que genera cada municipio mediante los resultados de los análisis físico-químicos realizados.
- Aplicar la normatividad colombiana vigente referida en las Leyes y Decretos que regulan el vertimiento de aguas residuales.
- Realizar las recomendaciones requeridas de acuerdo con el análisis de los resultados

4 DESCRIPCIÓN DEL ÁREA DE ESTUDIO

El área de estudio se describe teniendo en cuenta dos elementos integradores a saber; en primer lugar desde la interacción que mantienen la Cuenca Baja Arroyo Grande y los municipios asentados en su territorio, en cuanto al uso que se hacen de las diversas corrientes de agua superficiales para verter las aguas residuales generadas por cada una de las poblaciones urbanas.

En segundo lugar, desde la localización y descripción de los sistemas de tratamiento de aguas residuales de los municipios estudiados, lugar donde se realizó el trabajo de campo de esta investigación.

4.1 CUENCA BAJA ARROYO GRANDE

La extensión territorial de la Cuenca Baja Arroyo Grande, esta ubicada en la región central del departamento de sucre, la integran los municipios de Los Palmitos, Betulia y Sincé.

La hidrología de interés de esta parte de la cuenca, esta constituida por las corrientes superficiales que tienen relación directa con los vertimientos de aguas tratadas, y el uso que se hace de éstos cuerpos de agua por parte de los entes administradores de los servicios públicos de estos municipios.

MAPA ${ }^{\circ} 4$

En el cuadro $N^{0} 1$ se muestran los diversos cuerpos de agua y los municipios que los usan para verter los residuos líquidos tratados.

Cuadro No 1.Arroyos de importancia relacionados con los municipios que Conforman la Cuenca Baja Arroyo Grande

Municipios	Arroyos Receptores A.R.
Los Palmitos	Arroyo Caracolí
Sincé	Arroyo La Bodega, La Ceja
Betulia	Arroyo Grande, Quita Calzón

4.2 SISTEMAS DE TRATAMIENTO DE AGUAS RESIDUALES

4.2.1 MUNICIPIO DE LOS PALMITOS

- Localización

El sistema de tratamiento se encuentra localizado al sur-oeste de la cabecera municipal, en la vía que conduce al corregimiento de Sabanas de Pedro, en inmediaciones del Colegio Agropecuario del Municipio.
(Ver fig. ${ }^{\circ}{ }^{0}$)

La ubicación geográfica registrada con el equipo GPS es la siguiente:

Latitud Norte: $9^{\circ} 22^{\prime} 23.6 " \quad$ Longitud Oeste: $75^{\circ} 11$ 40.3"

- Características generales

Los residuos líquidos procedentes del casco urbano, llegan al sistema de tratamiento a través del colector final del alcantarillado, el cual conduce aproximadamente un 40\% del caudal de aguas residuales, generadas por la población ${ }{ }^{r}$.

Este sistema es del tipo laguna de estabilización, lo integran dos piscinas de tratamiento dispuestas en serie, comunicadas por las estructuras de paso.

Las estructuras de vertimiento, están integradas por estructuras de paso, las cuales conducen el efluente tratado a tres colectores, que a su vez se unen en uno solo para verter a una pequeña corriente superficial, esta corriente luego de recorrer 500 m , entrega sus aguas al Arroyo Caracoli.

El lote donde se encuentra ubicado este sistema, tiene una extensión de 1.5 hectáreas, cercado en alambre de púas, además en sus predios se localiza el basurero municipal (Ver anexo E; foto. ${ }^{\circ}{ }^{\circ} 5$)

[^0]FIGURA No 1

4.2.2 MUNICIPIO DE SINCÉ

- Localización

El Municipio de Sincé presenta dos sistemas de tratamiento de igual tipo y forma de disposición, y para efectos de este estudio, dada su ubicación se denominaron laguna de oxidación Sincé 1 y laguna de oxidación Sincé 2.

4.2.2.1 Laguna de oxidación Sincé 1

Esta laguna se encuentra localizada al sur-oeste de la cabecera municipal, en cercanías al estadio municipal de softbol, margen izquierda de la via que conduce al corregimiento de Hato Viejo, a este sistema ingresan el 65\% de las aguas residuales. (Ver fig. ${ }^{\circ}{ }^{2}$)

Su ubicación Geográfica es la siguiente:
Latitud Norte: $\quad 9^{\circ} 15^{\prime} \quad$ Longitud Oeste: $75^{\circ} 9^{\prime}$

4.2.2.2 Laguna de oxidación Sincé 2

Se ubica al sur-oeste del poblado, es de construcción reciente y recibe el 35% de las aguas residuales, conducidas por el alcantarillado municipal. (Ver fig. ${ }^{\circ}{ }^{\circ} 2$)

Su ubicación Geográfica es la siguiente:
Latitud Norte: $\quad 9^{\circ} 15^{\prime} \quad$ Longitud Oeste: $75^{\circ} 16^{\prime}$

- Características generales

Los aspectos de diseño de estos sistemas, presentan características similares a pesar de la construcción reciente de la láguna dée cxiáación Sincé 2 .

A continuación se anotan las características generales más representativas según el sistema referenciado.

Este tipo de laguna de oxidación presenta dos piscinas ubicadas una a lado de la otra, conectadas en serie. Las primeras piscinas de estos sistemas podrian considerarse de tipo "íagunas facuilativas", debido a las diferencias de profundidad que presenta.

La tubería interceptora del alcantarillado, conduce directamente las aguas residuales a la piscina de tratamiento 1, debido a esto se observa gran cantidad de residuos sólidos y sedimentos, por no presentar, en la entrada de este sistema estructuras de separación de sólidos.

De otro lado se observa unos "tacos de madera" al final de las tuberias que comunican a las piscinas de la íaguna dé oxiáación Sincé 1, esto con el fin de regar los cultivos aledaños (pastos), además en la íaguna dé cxiáación Sincé 2 , el ganado consume directamente el agua de las piscinas.

Al final de cada tramo de las piscinas se encuentra un vertedero de excesos, construido en concreto, el cual cumple la función de conducir el agua residual, a través de las etapas de tratamiento, como al vertido final; la láguna de cxiáación Sincé 1 vierte las aguas hacia un canal construido en tierra, que la comunica directamente con el Arroyo La Bodega. De igual forma la íaguna dée oxiáación Sincé 2, dirige sus vertimientos hacia una corriente superficial que se dirige hacia el Arroyo La Ceja.

FIGURA № 2

4.2.3 MUNICIPIO DE BETULIA

- Localización

Este municipio posee dos sistemas de tratamiento, ubicados en lugares distantes, de igual forma que el caso anterior, es del tipo lagunas de estabilización, para efectos de este estudio las denominamos laguna oxidación Betulia 1; Laguna oxidación Betulia 2 (Ver fig. № 3)

4.2.3.1 Laguna de oxidación Betulia 1

Se encuentra ubicada al Nor-oeste del centro urbano, margen izquierda de la via que conduce al caserío de Villa López.

Su ubicación geográfica ${ }^{1}$ es la siguiente:

Latitud Norte: $9^{\circ} 16^{\prime} 47 \prime$ Longitud Oeste: $75^{\circ} 143^{\prime \prime}$

4.2.3.2 Laguna de oxidación Betulia 2

Este sistema se localiza al Sur-este del centro urbano, margen izquierda de la via que conduce al corregimiento de Albania.

La ubicación geográfica es la siguiente:

Latitud Norte: $9^{\circ} 15^{\prime} 44 " \quad$ Longitud Oeste: $75^{\circ} 14^{\prime} 77^{\prime \prime}$

[^1]- Características generales

Estos sistemas de tratamiento presentan características similares en sus aspectos de diseño y funcionamiento, daremos a conocer datos generales, que nos permitan aplicar las acciones en la investigación realizada.

Estas lagunas de estabilización, están compuestas por dos líneas de tratamiento dispuestas en paralelo, cada línea la conforman dos piscinas de tratamiento, en donde se realiza una primera etapa de tratamiento, luego el efluente es conducido hasta la segunda piscina de tratamiento, para finalmente ser vertido este efluente tratado a los cuerpos de agua cercanos.

La láguna dé cxíación Beiluia 1, vierte sus aguas residuales tratadas directamente al cauce del Arroyo Grande.

De otra parte, la láguna doe cxiáación Betulia 2, vierte su efluente tratado al Arroyo Quita Calzón.

Las estructuras de conducción y pozos de inspección se encuentran deteriorados, sus taludes presentan abundantes malezas, prueba del poco mantenimiento que se les hace. Estos sistemas no presentan estructuras de medición de caudales.

Del total de la cobertura de alcantarillado, ingresan el 50\% a cada uno de los sistemas de tratamiento.

Figura ${ }^{\circ} 3$

5 REVISIÓN DE LITERATURA

5.1 NATURALEZA DE LAS AGUAS RESIDUALES

Las aguas residuales son líquidos turbios que contienen material sólido en suspensión, cuando son frescas, su color es gris y tienen un olor a moho desagradable; Flotan en ellas cantidades variables de materia, sustancias fecales, trozos de alimentos, basura, papel, astillas y otros residuos de las actividades cotidianas de los habitantes de una población.

Con el transcurso del tiempo, el color cambia gradualmente del gris al negro, desarrollándose un olor ofensivo y desagradable y sólidos negros aparecen flotando en la superficie del líquido; En este estado se denominan aguas residuales sépticas.

5.1.1 Origen de las aguas residuales

Las aguas residuales resultan de la combinación de los líquidos o desechos arrastrados por el agua, procedentes de las casas de habitación, de las actividades industriales y de servicios.

- Desechos humanos y animales, son las exoneraciones corporales que llegan a formar parte de las aguas residuales, mediante sistemas hidráulicos, y en cierto grado de los procedentes de animales, que van a dar a las alcantarillas, al ser lavadas en el suelo o en las calles.
- Desechos cóomésticos. Proceden de las manipulaciones domésticas, de lavada de ropa, baño, desperdicios de cocina, limpieza y preparación de alimentos y lavado de platos.
- Desechos industriaies y dé servicios. Los productos de los desechos de cualquier proceso de esta índole, son parte importante de las aguas residuales de una población para su tratamiento y evacuación.

5.1.2 Transporte de aguas residuales

Las aguas residuales son transportadas desde su punto de origen, hasta las instalaciones de los sistemas de tratamiento municipal, a través de un sistema de tuberías que conducen las aguas residuales, industriales y de servicios, definido como alcantarillado municipal. En muchas regiones se colectan los desechos industriales junto con los otros componentes de las aguas residuales ${ }^{2}$.

Los sistemas de alcantarillado que transportan tanto agua lluvia como aguas residuales se denominan alcantarillados combinados. (ver figura $\mathrm{N}^{\circ} 4$)

Las instalaciones domésticas suelen conectarse mediante tuberias de arcilla o PVC, de entre 8 y 10 pulgadas de diámetro; el tendido de alcantarillado con tuberias maestras de mayor diámetro puede estar situado a lo largo de la calle a unos 1.8 m o más de profundidad.

Las aguas residuales circulan a través del alcantarillado por el efecto de la gravedad, por tal motivo es necesario que la tubería esté inclinada para permitir un flujo a una velocidad de al menos $0.46 \mathrm{~m} / \mathrm{seg}$; ya que a velocidades más bajas la materia sólida tiende a depositarse ${ }^{3}$.

[^2]De lo anterior podemos concluir que:

Aguas residuales domésticas, son las aguas procedentes de zonas de vivienda y de servicios, y generadas principalmente por las actividades cotidianas de las personas y actividades de servicio. Contienen desechos humanos, animales y caseros, son típicas de asentamientos urbanos en las que no se ven afectadas por operaciones industriales o sólo en muy corta escala.

Aguas de escorrentía, formadas por todo escurrimiento superficial de las precipitaciones, que fluyen desde techos, pavimentos y otras superficies del terreno.

Aguas residuales municipales, son una mezcla de las aguas residuales domésticas, de escorrentía, industriales y de servicios que son conducidas a través de un alcantarillado municipal.

Figura N° 4. Principales fuentes de aguas residuales municipales

Elaboro : proponentes del proyecto

5.1.3 Composición de aguas residuales

La composición de las aguas residuales se analiza con diversas mediciones físicas, químicas y biológicas; las mediciones más comunes incluyen la determinación del contenido en sólidos, la demanda bioquímica de oxigeno, la demanda química de oxígeno y el pH .

Los residuos sólidos comprenden sólidos disueltos y los sólidos en suspensión.

En el cuadro N^{0} 2. Se presentan datos típicos de los constituyentes encontrados en el agua residual doméstica en función de las concentraciones de estos constituyentes, podemos clasificar el agua residual como, concentrada, media y débil.

Cuadro $\mathrm{N}^{0} 2$. Composición típica del agua residual cruda.

Contaminante	Unidad	Concentración		
		Débil	Media	Fuerte
DBO $_{5}$	mg / L	110	220	400
DQO $^{*} \mathrm{mg} / \mathrm{L}$	250	500	1.000	
ST	mg / L	1.200	720	350
SST	mg / L	100	220	350
Sólidos disueltos	mg / L	250	500	850
Alcalinidad	MgCaCO	3	50	100
Grasas	Mg / L	50	100	150
PH	U	5	6.5	7
Turbiedad	UNT	20	76	140

Fuente. Adaptado parcialmente de la Bibliografía Metcalf y Eddy (1996)

5.1.4 Características Típicas de las aguas residuales

Los estudios de caracterización del agua residual están encaminados a determinar las características físicas, químicas y biológicas del agua, además de las concentraciones de los constituyentes presentes en el agua residual ${ }^{4}$.

- Características físicas Dentro de las características fisicas, evaluadas en el presente estudio tenemos, temperatura, salinidad, sólidos disueltos, sólidos totales, sólidos suspendidos totales, oxígeno disuelto, turbidez y color.
- Características químicas Los análisis químicos de las aguas residuales, proporcionan datos respecto al estado de concentración de los contaminantes, las propiedades químicas más representativas son: $\mathrm{DBO}_{5}, \mathrm{DQO}, \mathrm{pH}$, alcalinidad, acidez y conductividad.
- Características biológicas Se determinan a través del análisis microbiológico, para identificar la presencia de microorganismos (coliformes fecales y coliformes totales), los cuales son indicadores de una posible contaminación fecal o de la existencia de posibles patógenos.

Es de anotar, que debido a las características del proyecto, y a los resultados de las pruebas de análisis de agua - Laboratorio Uninorte -, la caracterización de las aguas residuales vertidas en la cuenca baja Arroyo Grande, se realiza por medio de la combinación de pruebas - in situ - y parámetros de laboratorio; como se muestra en el siguiente aparte.

[^3]Cuadro No 3. Parámetros analizados para la caracterización de aguas residuales.

Parámetros "In situ"	Parámetros Lab. Aguas
PH	Alcalinidad
Temperatura	Acidez a la fenolftaleína
Conductividad	Turbidez
Salinidad	Color
TDS 1	

${ }^{1}$ Solidos Totales Disultos

A continuación se describe brevemente cada uno de los elementos físicos que caracterizan el agua residual:

- Temperatura - in situ -

La temperatura es un parámetro muy importante ya que influye en la obtención de resultados confiables en el campo o en el laboratorio. Así, por ejemplo, si se mide la conductividad de una muestra de agua, con un electrómetro que no posea la característica de compensación del resultado por efecto de la temperatura, se corre el riesgo de obtener un resultado incorrecto. Este parámetro no es un indicador de contaminación, más si indica que se trata de aguas refrescantes y que permiten el desarrollo de microorganismos.

- Conductividad, Salinidad y Sólidos Disueltos (TDS) - in situ -

La conductividad es una medida de la propiedad que poseen las soluciones acuosas para conducir la corriente eléctrica; esta propiedad depende de la presencia de iones, su concentración, movilidad y valencia, y de la temperatura de la medición.

La medida de la conductividad permite evaluar rápida pero muy aproximadamente la mineralización global del agua residual y se expresa en mhos ó umhos por cm , siendo los mhos el recíproco de la resistencia, u ohms ${ }^{-1}$.

El total de sólidos disueltos y la conductividad eléctrica del agua son directamente proporcionales; teniendo como base esta relación, se puede obtener el TDS, usando un equipo eíeclıométrico, un uso importante de esta relación es la estimación del total de sólidos disueltos en el agua residual.

Sabiendo que la conductancia específica del agua pura es igual a ($5 \mathrm{E}^{-8}$) ohm/cm; y que los vestigios de una impureza iónica aumentarán la conductancia en un orden de magnitud o más, se determinan curvas y aparatos de medición TDS, (Conductimetro - tipo HACH$)^{5}$, que nos indica en una pantalla de cristal liquido la conductividad que se deberá multiplicar por el factor que corresponda, para obtener el total de sólidos disueltos o directamente el valor que indica la totalidad de sólidos disueltos en la muestra.

Los sólidos disueltos representan el material soluble y coloidal, el cual requiere, para su remoción, oxidación biológica y sedimentación; en tratamientos biológicos de aguas residuales se recomienda un límite de sólidos disueltos de $16.000 \mathrm{mg} / \mathrm{L}^{6}$.

- Concentración de iones de hidrógeno (pH) -in situ-

El agua siempre se ioniza por la presencia de sustancias ácidas y básicas disueltas en ella, formando iones de hidrógeno (H^{+}) e iones negativos

[^4]llamados hidróxilos (OH-) cuando hay la misma cantidad de iones de ambos signos, la concentración de los iones de hidrógeno " $\mathrm{H}+\mathrm{C}$ es 0.0000001 veces el peso de los iones gramo del hidrógeno, expresados en gramos por litro. Para evitar tener que manejar decimales, se dice que el pH en este caso es 7 (es decir, igual al número de ceros que preceden a la unidad)

El valor del pH puede variar conforme con esta explicación entre 1.0 cuando el líquido esta saturado de ácido y 0.0000000000001 cuando lo está de sustancias alcalinas o básicas, por lo tanto, el pH se expresa por un número comprendido entre 0 (ácido puro) y 14 (alcalinidad pura), lo ideal es $\mathrm{pH}=7$ (Neutralidad)

Es de anotar que el equipo usado en este trabajo es el pH-meter, tipo: HACH , el cual registra datos con aproximaciones de 0.01 unidades de pH en un rango de 0 a 14, así mismo este equipo viene dotado de un compensador de temperatura.

Para descarga de efluentes de tratamiento secundario, se estipula un pH de 6.0 a 9.0.

- Alcalinidad

La alcalinidad de un agua residual está provocada por la presencia de hidroxilos, carbonos y bicarbonatos de elementos como el calcio, el magnesio, el sodio, el potasio y el amoníaco; de entre todos ellos, los más comunes son el bicarbonato de calcio y el bicarbonato de magnesio; normalmente el agua residual es alcalina, propiedad que adquiere de los materiales añadidos en los usos domésticos.

La alcalinidad se determina por titulación con un ácido normalizado, expresándose los resultados en carbonatos de calcio $\left(\mathrm{CaCO}_{3}\right)$, aguas
residuales con alcalinidad cáustica reaccionan con el CO_{2} producido por la actividad microbial para generar bicarbonato y reducir el valor del pH .

Los limites permisibles de la alcalinidad están entre $50 \mathrm{mg} / \mathrm{L}$ y $200 \mathrm{mg} / \mathrm{L}$.

- Acidez a la fenolftaleína

La acidez de un agua es su capacidad cuantitativa de neutralizar una base fuerte a un pH de 8.2

La acidez se origina en la disolución de CO_{2} atmosférico, en la oxidación biológica de la materia orgánica o en la descarga de aguas residuales industriales, su efecto corrosivo en aguas residuales es de gran importancia, así como su posible efecto destructor o alterador de la flora y fauna de fuentes receptoras.

Los resultados se expresan como $\mathrm{mgCaCO}_{3} / \mathrm{L}$.

- Turbiedad o turbidez

Es el efecto óptico que se origina al dispersarse o interferirse el paso de los rayos de luz que atraviesan una muestra de agua, a causa de las partículas minerales u orgánicas que el líquido puede contener en forma de suspensión.

Las aguas residuales crudas son, en general, turbias; en aguas residuales tratadas puede ser un factor de control de calidad, los resultados se expresan en unidades de turbidez (UNT), que corresponde a los patrones de turbidez estándar basados en 1 mg por litro de sólidos en tierra diatomácea o de batan.

- Color

Las aguas residuales domésticas frescas son generalmente de color gris y a medida que el agua envejece cambia a color gris oscuro, y luego a negro. El color negro de las aguas residuales sépticas, es producido principalmente por la formación de sulfuros metálicos.

El resultado del color se expresa en este estudio, como unidades de color (U pt Co ${ }^{7}$.

- Oxígeno disuelto

El oxigeno disuelto es necesario para la respiración de los microorganismos aerobios, así como para otras formas de vida.

La presencia de oxigeno disuelto en el agua residual es deseable porque evita la formación de olores desagradables.

- Sólidos totales

Los sólidos totales del agua residual proceden de las actividades agroindustriales y domesticas. Los sólidos domésticos incluyen los procedentes de inodoros, baños, lavaderos etc. Analíticamente, el contenido total de sólidos de un agua residual se define como toda la materia que queda como residuo de evaporación a $105^{\circ} \mathrm{C}$.

[^5]
5.2 SISTEMAS DE TRATAMIENTO DE AGUAS RESIDUALES

Los métodos empleados para el tratamiento de las aguas residuales han mostrado una constante evolución y desarrollo; estos métodos se empezaron a desarrollar ante la necesidad de velar por la salud pública y evitar las condiciones adversas provocadas por la descarga del agua residual al medio ambiente.

No obstante, la prevención de la contaminación del agua y del suelo es solamente posible si se definen técnicas apropiadas de tratamiento y disposición de las aguas residuales.

Los contaminantes presentes en el agua residual pueden eliminarse con procesos químicos, físicos y/o biológicos.

El tratamiento biológico cuando se aplica a las aguas residuales supone la remoción de contaminantes mediante actividad biológica; la actividad biológica se aprovecha para remover principalmente sustancias orgánicas biodegradables, coloidales o disueltas mediante su transformación en gases que escapan a la atmósfera y en biomasa extraíble mediante sedimentación ${ }^{8}$.

En general, los procesos o tratamientos biológicos se convierten en la solución más adecuada en el caso de la totalidad de las aguas residuales municipales.

Así mismo, solamente una franja ubicada entre el 5% y el 10% de las cabeceras municipales de Colombia hace algún tipo de tratamiento de aguas residuales ${ }^{9}$.

[^6]Debido a las limitaciones de adquisición de terrenos, cargas orgánicas fluctuantes, restricciones económicas y escasez de personal preparado, el tratamiento biológico más apropiado corresponde al de íagunas dée esiabulización. El objetivo primordial de estas lagunas es la reducción del contenido de sólidos y materia orgánica del agua residual y no a la obtención de un efluente de alta calidad.

Por esta razón las lagunas anaerobias operan en serie con las lagunas facultativas y de maduración; por lo general se utilizan lagunas de varios tipos en serie para asegurar un efluente de mejor calidad (Ver figura ${ }^{\circ}{ }^{\circ} 5$)

5.2.1 Lagunas de Estabilización

Una laguna de estabilización, conocida comúnmente como laguna de oxidación, es una masa de agua relativamente poco profunda, contenida en un tanque excavado en el terreno.

El sistema de lagunas consta de estructuras de tierra abiertas al sol y aire, los cuales constituyen los recursos naturales a los que pueden recurrir estas lagunas para lograr el objetivo del proceso de tratamiento de aguas residuales.

Las lagunas de estabilización se clasifican según su funcionamiento, número de estanques, posición y conexiones, de esta forma se tiene:

- Según su funcionamiento: Lagunas anaerobias, facultativas y de maduración
- Según el número de estanques: Lagunas simples y compuestas.
- Según su posición en el sistema lagunar: Primarias, secundarias y terciarias.
- Según sus conexiones: En serie o en paralelo.

Figura ${ }^{\circ} 5$. Tipos de lagunas más comunes.

5.2.1.1 Lagunas anaerobias (Laguna de oxidación):

Estas lagunas se utilizan normalmente como primera fase en el tratamiento de aguas residuales urbanas e industriales, con alto contenido de materia orgánica biodegradable ${ }^{10}$.

5.2.1.2 Lagunas facultativas:

Son aquellas que poseen una zona aerobia y una anaerobia, situada respectivamente en superficie y fondo; en estas lagunas es esencial la presencia de algas, que son las principales aportantes de oxigeno disuelto debido al proceso de la fotosíntesis.

5.2.1.3 Lagunas de maduración:

De acuerdo con el manual de operaciones depuración por lagunaje de aguas residuales (Madrid 1991), las lagunas de maduración tienen como objetivo primordial la eliminación de bacterias patógenas, virus, parásitos y demás organismos perjudiciales.

Estas lagunas operan siempre al menos como lagunas secundarias, es decir, como mínimo el agua residual a pasado por otro tratamiento antes de ser introducida en ellas, de esta forma se proveen los medios que garantizan la remoción natural de los organismos coliformes, permitiendo satisfacer la desinfección de las aguas residuales.

5.2.2 Caudales de Aguas Residuales

Los caudales de aguas residuales oscilan ampliamente durante el año, cambian de un día a otro y fluctúan de una hora a otra. En las zonas dotadas de red de alcantarillado, la determinación de los caudales se lleva a cabo a través de datos obtenidos en aforos por medición directa.

Así mismo, en los sistemas de tratamiento el caudal de agua residual se puede determinar mediante el uso de aforadores tipo Parshall y/o Ballofet, entre otros; estos tipos de aforadores son estructuras hidráulicas que normalmente se construyen antes que el afluente ingrese al sistema de tratamiento de aguas residuales. Cuando no se cuenta con estos aforadores el caudal se puede estimar mediante la aplicación de ecuaciones hidráulicas.

Todos los factores anteriores entre otros, deben tenerse en cuenta en la medición de caudales de A.R.

En alcantarillados combinados se presenta una mayor concentración de material inorgánico que en alcantarillados sanitarios o separados, debido a la introducción de aguas lluvias, así mismo, las variaciones de caudal y de concentración de A. R. son más extremas.

[^7]
5.2.2.1 Cálculo de caudal aguas residuales

Según Gordon Maskew, Fair, 1981, para todo escurrimiento el caudal Q es igual a la velocidad de flujo \mathbf{V}, multiplicada por el área de la sección \mathbf{A}.

$$
Q=V A
$$

Donde:

$$
\begin{aligned}
& \mathrm{Q}=\text { Caudal }(\mathrm{L} / \mathrm{seg}) \\
& \mathrm{V}=\text { Velocidad }(\mathrm{m} / \mathrm{seg}) \\
& \mathrm{A}=\text { Área sección }\left(\mathrm{m}^{2}\right)
\end{aligned}
$$

- Método de velocidad área

Existen varias técnicas para determinar la velocidad, entre los cuales encontramos las medidas con flotadores superficiales, con los cuales se registra el tiempo (t), que el cuerpo flotador emplea para recorrer una distancia (L), previamente definida de donde la velocidad está dada por :

$$
V=\frac{L}{t}
$$

Donde:

$$
\begin{aligned}
V & =\text { Velocidad }(\mathrm{m} / \mathrm{seg}) \\
L & =\text { Distancia }(\mathrm{m}) \\
\mathrm{t} & =\text { Tiempo }(\text { seg. })
\end{aligned}
$$

- Sección transversal

Los elementos hidráulicos de una alcantarilla de sección transversal circular parcialmente llenas, (como es el caso de todos los emisarios finales de los sistemas de tratamiento estudiados) se ilustran en la figura $\mathrm{N}^{\circ} 6$.

Figura $\mathrm{N}^{0} 6$. Elementos hidráulicos de un canal de sección circular.

Fuente: Fair, Geyer y Okun, 1980.

La aplicación de esta metodología se encuentra detallada en el planteamiento metodológico de este trabajo, y los resultados de las memorias de cálculo de caudal aguas residuales, se encuentran resumidas en el anexo A.

5.2.3 Disposición de efluentes tratados

Después de ser tratada, el agua residual debe ser evacuada al medio ambiente o reutilizada.

El método más común para la evacuación de efluentes tratados se basa en el vertido y dilución en corrientes, ríos, arroyos, lagos, estuarios o en el mar. Para evitar estos impactos ambientales adversos, la calidad de los efluentes tratados y vertidos debe ser coherente con los objetivos locales en materia de calidad del agua ${ }^{11}$.

[^8]
5.2.4 Control de calidad de los vertimientos líquidos a cuerpos de aguas superficiales

El manejo sanitario de las aguas residuales interviene en cada fase de la evacuación técnica de aquellas; se inicia donde termina el suministro de aguas, en los accesorios y equipos a través de los cuales las aguas residuales son vertidas a los colectores, continúa con el sistema de alcantarillado a través de las plantas de tratamiento y termina hasta cuando los cuerpos receptores de aguas han sido retornados a su pureza deseada. (Metcalf \& Eddy)

El propósito esencial del análisis de un agua residual consiste en encontrar la composición, concentración y condición del agua residual cruda, y los posibles efectos que puedan causar a los cuerpos de agua receptores.

En muchos casos es preciso llevar a cabo un riguroso análisis para asegurar que la evacuación de los efluentes se lleva a cabo dentro del marco normativo para la protección del medio ambiente.

Por ejemplo, la normatividad aplicada por el Departamento Administrativo del Medio Ambiente (DAMA) de Bogotá, establece en su Resolución 1074 de 1997, las concentraciones máximas permisibles para vertimientos a un cuerpo de agua o red de alcantarillado público. (ver cuadro ${ }^{\circ}{ }^{0} 4$)

Cuadro $\mathrm{N}^{0} 4$. Concentraciones máximas permisibles para verter a un cuerpo de agua o red de alcantarillado.

Parámetro	Unidades	Norma (mg/L)
DBO_{5}	$\mathrm{mg} / \mathrm{L} / \mathrm{O}_{2}$	1.000
DQO	$\mathrm{mg} / \mathrm{L} / \mathrm{O}_{2}$	2.000
SST	Mg / L	800
Temperatura	${ }^{\circ} \mathrm{C}$	<30
PH	U	$5-9$

Fuente: Adaptado parcialmente Resolución 1074/97 DAMA Bogotá.

Para la evaluación de las diferentes características de un agua residual se deben seguir los métodos normales ó estándar, estos métodos se utilizan para apoyar las normas de calidad de agua en todos los niveles gubernamentales.

Para cumplir con el soporte técnico en el proceso de implementación del Decreto 901/97 MMA, tasas retributivas, se aplicó la metodología establecida por el IDEAM en su Decreto 1600, el cual contiene el instructivo para la medida de la presencia y concentración de contaminantes denominado "Manual de Métodos y Protocolos para el Análisis Químico de Aguas Naturales Domésticas y Efluentes Industriales" ${ }^{12}$.

Hoy en día está claro, que es necesario controlar eficazmente todas aquellas contaminaciones perfectamente evitables, mediante el uso de multitud de estrategias, llegándose al extremo de aplicar el axioma "quien contamina paga", es decir, al pago de tasas retributivas por contaminación hídrica. ${ }^{13}$

Para efectuar este control en el ámbito regional, primero es necesario conocer y comprender los parámetros y conceptos en que se basa la - CALIDAD DEL AGUA - así como los tipos de contaminantes que la puedan afectar.

5.3 CONTAMINACIÓN POR MATERIA ORGÁNICA Y SÓLIDOS EN SUSPENSIÓN

Los efectos de las aguas residuales sobre el sistema de tratamiento y sobre la fuente receptora, se observan en función de su concentración, así como de su cantidad o caudal.

[^9]
- Materia Orgánica Biodegradable

La materia orgánica biodegradable se mide, en la mayoría de las ocasiones, en función de la DBO (Demanda bioquímica de Oxigeno) y de la DQO (Demanda química de oxigeno) si se descargan al entorno sin tratar su estabilización biológica puede llevar al agotamiento de los recursos naturales de oxígeno y al desarrollo de condiciones sépticas.

- Sólidos en Suspensión

Los sólidos en suspensión pueden dar lugar al desarrollo de depósitos de fango y de condiciones anaerobias cuando se vierte agua residual sin tratar a los cuerpos de aguas.

- Grasas y/o Aceites

La presencia de grasas y aceites en el agua residual puede provocar problemas tanto en la red de alcantarillado, como en los sistemas de tratamiento municipal. Si no se elimina el contenido en grasas antes del vertido del agua residual, puede interferir con la vida biológica en cursos de agua superficiales, y crear peliculas y acumulaciones de materia flotante desagradable.

5.4 CARGAS CONTAMINANTES POR VERTIMIENTOS DE AGUAS RESIDUALES

El producto de la concentración por el caudal, en un sitio especifico, se denomina carga y generalmente se expresa en Kg/dia.
(Metcalf y Eddy)

5.4.1 Demanda Bioquímica de Oxígeno - DBO5 -

El parámetro de contaminación orgánica más ampliamente empleado en la caracterización de aguas residuales es la DBO a 5 dias (DBO_{5}), la determinación de este parámetro está relacionada con la medición del oxigeno disuelto que consumen los organismos en el proceso de oxidación bioquímica de la materia orgánica.

Los resultados de los ensayos de DBO_{5} se emplean para:

- Determinar la cantidad aproximada de oxigeno que se requerirá para estabilizar biológicamente la materia orgánica presente.
- Dimensionar las instalaciones de tratamientos de aguas residuales.
- Medir la eficacia de algunos procesos de tratamiento.
- Controlar el cumplimiento de las limitaciones a que están sujetos los vertidos.

5.4.2 Demanda Química de Oxígeno - DQO-

El ensayo de la DQO se emplea para la medición de la materia orgánica presente en aguas residuales tanto industriales como municipales que contengan compuestos contaminantes para la vida biológica.

La DQO de un agua residual suele ser mayor que la correspondiente DBO, esto debido al mayor número de compuestos cuya oxidación tiene lugar por via quimica frente a los que se oxidan por vía biológica.

5.4.3 Sólidos Suspendidos Totales -SST-

Los sólidos suspendidos totales, es un ensayo de tipo fisico que cuantifica los sólidos en suspensión, contenidos en las aguas residuales.

La obtención de este parámetro se ioniza por filtración, haciendo pasar un volumen conocido de líquido por un filtro de fibra de vidrio, con un tamaño nominal de poro de 1.2 micrómetros.

5.5 TASAS RETRIBUTIVAS POR CONTAMINACIÓN HÍDRICA

Las tasas retributivas tienen sus inicios en el año de 1974, establecidas por el Decreto 2811 del Código de Recursos Naturales, creadas como instrumento económico para el control de las emisiones de desechos líquidos y gaseosos.

De igual forma, el artículo 42 y 43, del Título VII de la Ley 99 de 1993 establece que la utilización de los cuerpos de agua, para el vertimiento de desechos líquidos, será objeto del cobro de tasas fijadas por el gobierno; más adelante en el año de 1997 se reglamentaron las tasas retributivas a través del Decreto 901 del 1° de Abril por el MMA. La tasa retributiva se entiende entonces, como "el precio que cobra el Estado por la utilización de los cuerpos de agua como vertederos de desechos o desperdicios agrícolas, mineros o industriales, aguas residuales de cualquier origen y sustancias nocivas que sean resultado de actividades producidas por el hombre".

El Ministerio del Medio Ambiente, en su Resolución 273 de 1997, define las sustancias contaminantes para ser cobradas por la autoridad ambiental correspondiente; Estas son:

Demanda Bioquímica de Oxígeno- DBO_{5} -
Sólidos Suspendidos Totales - SST -

5.6 LEGISLACIÓN AMBIENTAL VIGENTE

Se resaltan las normas ambientales, artículos y decretos de interés para el presente estudio.

5.6.1 Constitución Política de Colombia

Artículo 79 C.N. Todas las personas tienen derecho a gozar de un ambiente sano.

Es deber del Estado proteger la diversidad e integridad del ambiente, conservar las áreas de especial importancia ecológica y fomentar la educación para el logro de estos fines.

Artículo 80 C.N. El Estado planificará el manejo y aprovechamiento de los recursos naturales, para garantizar su desarrollo sostenible, su conservación, restauración o sustitución.

Además deberá prevenir y controlar los factores de deterioro ambiental, imponer las sanciones legales y exigir la reparación de los daños causados.

5.6.2 Decreto No 1594 del 26 de junio de 1984

"Por la cual se reglamenta parcialmente el Título I de la Ley 09 de 1979, así como el Capítulo II del Título VI - Parte III - Libro II y el Título III de la parte III - Libro I - del Decreto 2811 de 1974 en cuanto al Uso del Agua y Residuos Líquidos".

Artículo 6. Entiéndase por VERTIMIENTO LIQUIDO cualquier descarga líquida a un cuerpo de agua o a un alcantarillado.

Artículo 62. Se prohíbe la utilización de aguas del recurso del acueducto público y las de almacenamiento de aguas lluvias, con el propósito de diluir los vertimientos, con anterioridad a la descarga al cuerpo receptor.

Artículo 72. Todo vertimiento a un cuerpo de agua deberá cumplir, por lo menos, con las siguientes normas:

REFERENCIA	USUARIO EXISTENTE	USUARIO NUEVO
PH	5 a 9 U	5 a 9 U
Temperatura	$\leq 40^{\circ} \mathrm{C}$	$\leq 40^{\circ} \mathrm{C}$
Material flotante	Ausente	Ausente
Grasas y Aceites	Remoción $\geq 80 \%$ en carga *	Remoción $\geq 80 \%$ en carga *
Sólidos suspendidos, Domésticos o Industriales	Remoción $\geq 50 \%$ en carga *	Remoción $\geq 80 \%$ en carga *
DEMANDA BIOQúmICA DE oxIGENO Para desechos domésticos Para desechos industriales Caudal máximo	Remoción $\geq 30 \%$ en carga * Remoción $\geq 20 \%$ en carga *	Remoción $\geq 80 \%$ en carga * Remoción $\geq 80 \%$ en carga *

* Carga máxima permisible (CMP)

5.6.3 Ley 99 de 1993

Artículo 42. La utilización directa o indirecta de la atmósfera, del agua o del suelo, para introducir o arrojar desechos o desperdicios agrícolas, mineros, industriales, aguas negras o servidas de cualquier origen, que sean resultado de actividades antrópicas o propiciadas por el hombre, o actividades de servicio, sean o no lucrativas se sujetará al pago de tasas retributivas por las consecuencias nocivas de las actividades expresadas.

5.6.4 Decreto 901 del 1 de abril de 1997.

"Por medio de la cual se reglamentan las tasas retributivas por la utilización directa o indirecta del agua como receptor de los vertimientos puntuales y se establecen las tarifas de éstas".

CAPITULO II.

Artículo 3. Para la interpretación y aplicación de las normas contenidas en el presente Decreto se adoptarán las siguientes definiciones:

Carga contaminante diaria (Cc) Es el resultado de multiplicar el caudal promedio por la concentración de la carga contaminante, por el factor de conversión de unidades y por el tiempo diario de vertimiento del usuario, medidos en horas, es decir:

$$
C c=Q \times C \times 0.0864 \times(t / 24)
$$

Donde:
Cc = Carga contaminante, en kilogramos por día (Kg/día)
Q = Caudal promedio, corresponde al volumen de vertimiento por unidad de tiempo durante el período de muestreo en litros por segundo (l/s)
C $\quad=$ Concentración de sustancias contaminantes en miligramos por litro (mg / l)
$0.0864=$ Factor de conversión de unidades
t $\quad=$ Tiempo de vertimiento del usuario, en horas por día (h)

CAPITULO IV.

Articulo 17. Muestreo. Los métodos analíticos utilizados para la toma y análisis de las muestras de vertimientos, base de la caracterización representativa, serán establecidos por el instituto de Hidrología Meteorología y Estudios Ambientales, IDEAM. En ausencia de éstos se aplicarán los métodos establecidos en el capitulo XIV del Decreto 1594 de 1984, o normas que lo modifiquen o sustituyan.

La autoridad ambiental competente precisara para cada fuente contaminadora el procedimiento para llevar a cabo los muestreos. Para tal efecto, se especificarán para cada uno de los parámetros objeto del cobro de la tasa, por lo menos los siguientes aspectos:
a) Volumen total de la muestra, tipo de recipiente a utilizar, método de preservación de la misma y tiempo máximo de conservación.
b) Tipo de muestra, si debe ser puntual o compuesta; para el primer caso, la hora de toma de la muestra; y para el segundo caso, si la muestra se integra con respecto al caudal o al tiempo; la periodicidad de toma de muestras puntuales y el tiempo máximo de integración.
c) Numero de días de muestreo.
d) Especificaciones generales para llevar a cabo el aforo de los caudales de vertimiento.

Articulo 18. Análisis de las muestras. La caracterización a que se refieren los artículos anteriores, deberá ser adelantada por laboratorios debidamente normalizados, intercalibrados y acreditados, de conformidad con lo establecido en el Decreto 1600 de 1994, o las normas que lo modifiquen o sustituyan.

CAPITULO VI.

Articulo 24. Obligatoriedad de los limites permisibles. Los limites permisibles de vertimiento de las sustancias, elementos o compuestos, que sirvan de base para el cobro de la tasa retributiva son los establecidos en el decreto 1594 de 1984, o las normas que lo sustituyan o modifiquen. En ningún caso el pago de las tasas retributivas exonera a los usuarios del cumplimiento de los limites permisibles de vertimiento:

6 PLANTEAMIENTO METODOLÓGICO

Para lograr los objetivos propuestos en este trabajo se aplicó una metodología de tipo descriptiva, enmarcada dentro de un esquema básico diseñado a partir de la implementación de las políticas ambientales establecidas por el Ministerio del Medio Ambiente y ejecutadas por la Corporación Autónoma Regional de Sucre CARSUCRE, en el área de su jurisdicción

6.1 REVISIÓN DE LA INFORMACIÓN EXISTENTE

La metodología utilizada para esta actividad, consistió primordialmente en la identificación y revisión de la información existente y/o trabajos de grado realizados en relación con la determinación de los constituyentes ambientales y socioeconómicos del área de estudio.

Los aspectos físicos se organizaron para referenciar la Cuenca Baja Arroyo Grande, y los aspectos socioeconómicos se identificaron según las actividades realizadas por la población asentada en los municipios de estudio (Los Palmitos, Sincé y Betulia)

6.1.1 Aspectos Físicos de la Cuenca Baja Arroyo Grande

La identificación de las diferentes características abióticas de la Cuenca, se realiza de acuerdo a la información obtenida del Instituto Geográfico Agustín

Codazzi (IGAC) y estudios e investigaciones realizadas por la Corporación Autónoma Regional de Sucre "CARSUCRE" y la Universidad de Sucre.
Según la información obtenida del área de estudio y confrontada entre sí, se lograron determinar los siguientes elementos naturales referentes al aspecto fisico, Cuenca Baja Arroyo Grande.

- Geología
- Geomorfología
- Fisiografia
- Suelos
- Clima
- Zonas de vida
- Hidrografia

6.1.2 Aspectos Socioeconómicos Municipios de Los Palmitos, Sincé y Betulia

El estudio socioeconómico se realizó, partiendo de la información suministrada por las Secretarías de Planeación, Secretarías de Salud, Secretarías de Educación, UMATAS, Empresas de Servicios Públicos Domiciliarios y demás entidades relacionadas con este aspecto.

La información obtenida se complementa con la presentada en los Planes de Desarrollo Departamental y los Planes de Ordenamiento Territorial de los municipios estudiados.

6.2 IDENTIFICACIÓN DEL COMPONENTE AMBIENTAL

En la identificación del componente ambiental se diseñó una metodología que permitiera obtener la información requerida del área de influencia del proyecto, el cual se realiza a través de las actividades definidas en cooperación conjunta, entre el equipo humano del proyecto, tasas retributivas por vertimientos puntuales (jurisdicción de CARSUCRE), estudiantes tesistas de la Universidad del Norte y los proponentes de este trabajo. ${ }^{14}$

Los resultados de este componente se obtienen, luego del monitoreo ambiental realizado a los Sistemas de Tratamiento de Aguas Residuales, realizado entre Octubre 16/2000 y Noviembre 3/2000.

6.2.1 Actividades de Campo

Según visitas preliminares a los municipios, se identificó que todos presentan sistemas de tratamiento de aguas residuales del tipo laguna de oxidación, con características de tratamiento similares entre ellas; para tal fin es importante resaltar que todas las actividades diseñadas para el monitoreo se hacen en forma general, buscando unificar parámetros y criterios de evaluación ${ }^{15}$.

6.2.1.1 Estaciones de muestreo

A partir del recorrido realizado en las visitas previas al área de estudio, se determinaron sobre el terreno los puntos exactos del afluente y efluente de cada uno de los sistemas de tratamiento de aguas residuales de los municipios integrantes de la cuenca.

[^10]- Muestreo: Para la toma de muestra, se usó el método de muestras compuestas con base en el tiempo, es decir, se realizaron toma de muestras paralelas de igual volumen de agua residual cada hora, en el lapso comprendido entre las 8:00 y las 16:00 horas de la fecha de muestreo. Es de anotar que este procedimiento se realizó en todos los puntos de muestreo, durante los días de muestreo y por cada municipio estudiado. (Articulo 17. Decreto 901 del 1° de abril de 1997, Tasas retributivas por vertimientos puntuales)

6.2.1.2 Registro de Parámetros Físico químicos

Todas estas actividades se realizaron y registraron "in situ" mediante la observación y/o a través de equipos electrónicos para la determinación de parámetros.

- Registro "in situ" de parámetros fisicoquímicos: Según las especificaciones anotadas en el Decreto 1600 del IDEAM y dando cumplimiento a la norma, se hizo necesario el registro "in situ" de los siguiente parámetros:

Cuadro No 5. Equipo usado Parámetros Registrados "in situ"

Parámetro	Unidad	Equipo	Frecuencia	Volumen Muestra m / I
PH	Iones	pH - meter Tipo: HACH	Horaria	Alícuota
Temperatura agua residual	${ }^{\circ} \mathrm{C}$ *			
Conductividad	Us/Cm	Conductivity-meter Tipo HACH	Horaria	Alícuota
Salinidad	\%			
Solid. Dis	mg/l			
Temperatura Agua residual	${ }^{\circ} \mathrm{C}$ *			
Temperatura Agua	${ }^{\circ} \mathrm{C}$	Termómetro Hg	Horaria	Alícuota
Temperatura Ambiente	${ }^{\circ} \mathrm{C}$	Termómetro Hg	Diaria	-

Elaboró: Proponentes de este trabajo.
*Temperatura equipo: Cada uno de los equipos utilizados registró la temperatura
del agua residual para ajustar internamente los resultados, a los factores externos.

6.2.1.3 Preservación de las muestras

Según los requerimientos del análisis de laboratorio y las normas establecidas en el Decreto 1600 del IDEAM, se utilizaron dos tipos de frascos de muestreo para la preparación de la muestra.

- Botella Rutner

Recipiente de plástico con capacidad para dos litros, debidamente rotulada con fecha de muestreo, punto de muestreo, parámetros a determinar.

Para los requerimientos del estudio, de esta muestra se analizaron los parámetros siguientes: OD, alcalinidad, acidez a la fenolftaleína, turbidez, color, DBO_{5}, SST, ST.

- Botella de vidrio color ámbar

Recipiente con capacidad de 250 ml , de color ámbar para evitar la exposición a los rayos de la luz solar.

En esta botella se le adicionaba a la muestra ácido sulfúrico $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, para disminuir el pH a 2^{16}. Esta muestra se uso para la determinación de DQO.

Todas las botellas usadas en el muestreo se rotulaban debidamente, además eran empacadas y conservadas en neveras de Icopor, a una $T^{\circ} \pm 4^{\circ} \mathrm{C}$, para ser enviadas diariamente, al laboratorio de aguas de la Universidad del Norte (Barranquilla), esto con el fin de realizarles los análisis fisico - químicos requeridos.

[^11]FIGURA N ${ }^{\circ} 7$

6.2.1.4 Medición de caudales de aguas residuales municipales

Los caudales de aguas residuales se determinaron a la entrada (afluente); de cada sistema de tratamiento, esto debido a que las condiciones de diseño de los mismos, imposibilitaron su cálculo a la salida (efluente)

Debido a la disposición y tipo de estructuras que permiten el ingreso de las aguas residuales crudas a tratamiento, se realizo la medición del caudal, de aguas residuales por medio de la aplicación de ecuaciones hidráulicas, a través del método de velocidad y área.

6.2.1.5 Identificación del componente biótico área de influencia del Proyecto

Para el estudio del componente biótico, la metodología usada consistió fundamentalmente en la observación directa e indirecta de sus aspectos importantes: La vegetación y la fauna.

- Vegetación

Se realizaron recorridos por el área de influencia de cada sistema de tratamiento, con el fin de tabular las especies vegetales observadas en el lugar.

- Fauna

Para la identificación de las diferentes especies animales, la metodologia consistió básicamente en la observación directa, verificando a diferentes horas del día la presencia de estas especies, además se registró información suministrada por habitantes y moradores de la región.

6.2.2 Pruebas de laboratorio

6.2.2.1 Análisis fisicoquímicos Aguas Residuales

Los análisis de laboratorio de los parámetros físico - químicos de interés para este estudio, fueron realizados por el laboratorio de aguas de la Universidad del Norte con sede en Barranquilla.

Se escogieron los parámetros teniendo en cuenta la importancia de los mismos como indicadores de la calidad del agua y los recursos disponibles para su determinación.

Es de anotar que por los requerimientos del proyecto tasas retributivas, la determinación de las concentraciones más significativas y que revisten mayor importancia, son la DBO_{5}, demanda bioquímica de oxigeno y SST sólidos suspendidos totales.

Los análisis fueron efectuados de acuerdo a los criterios establecidos en el Decreto 1600 del IDEAM, Manual de Métodos y Protocolos para el Análisis Químico de Aguas Naturales Domesticas y Efluentes Industriales.
Las técnicas de análisis utilizados son las siguientes:

Cuadro $N^{0} 6$. Técnicas de análisis aguas residuales domesticas

Ensayo	Unidad	Método Analítico
DBO_{5}	mg / L	Incubación cinco (5) días
DQO	mg / L	Oxidación Sulfocronica
OD	mg / l	Winkler
ST	mg / l	Desecador
SST	mg / l	Conos Imohff
Alcalinidad	$\mathrm{MgCaCO}_{3} / \mathrm{l}$	Titulación
Acidez a la fenolftaleína	$\mathrm{MgCaCO}_{3} / \mathrm{l}$	Titulación
Turbidez	UNT	Turbidimetro
Color	UC	Escala de color

Determinación de las cargas contaminantes vertidas en la Cuenca Baja Arroyo Grande.

6.2.2.2 Análisis de Grasas y/o Aceites

Se analizaron en visitas posteriores a la realización del monitoreo; en el Anexo B, se presentan los resultados de los análisis efectuados a través de muestras de tipo puntual, para la determinación de grasas y/o aceites, entre otros.

6.2.3 Actividades de oficina

Toda la información obtenida en la realización de los diferentes cálculos e interpretación de los resultados obtenidos, tanto de la actividad de campo como de las pruebas de laboratorio, se organizó de tal manera que se elaboraron tablas, gráficas y figuras, mediante la utilización de programas de computación.

6.2.3.1 Caracterización de aguas residuales urbanas

Los datos registrados "in situ" y otros parámetros analizados en laboratorios, se usaron para realizar la caracterización de las aguas residuales provenientes del alcantarillado municipal, con el objetivo de estimar el estado en que llegan estas aguas residuales al sistema de tratamiento y su condición de salida.

Los valores registrados se compararon con la normatividad colombiana establecida para estos fines, como son el Decreto 1594/84 del Ministerio de Salud ${ }^{17}$, leyes aplicadas para las disposiciones sanitarias sobre aguas, como también de la recolección, transporte, tratamiento y disposición final de efluentes.

[^12]
6.2.3.2 Determinación de la carga contaminante vertida en la Cuenca Baja Arroyo Grande

- Determinación Carga Contaminante

Los cálculos necesarios en este estudio, se harán siguiendo las normas establecidas por el Ministerio del Medio Ambiente y aplicada por la Corporación Autónoma Regional de Sucre CARSUCRE en las cuencas de su jurisdicción, con el objeto de implementar las tasas retributivas por la utilización directa o indirecta del agua como receptor de vertimientos puntuales.

- Cálculo de la Carga Contaminante diaria

Es el resultado de multiplicar el caudal promedio por la concentración de la carga contaminante, por el factor de conversión de unidades y por el tiempo diario de vertimiento del usuario medido en horas, es decir:

$$
C c=Q x C \times 0.0864(t / 24)^{18}
$$

Donde:
Cc = Carga contaminante en kilogramos por día (Kg/dia)
Q $\quad=$ Caudal promedio, corresponde al volumen de vertimiento por unidad de tiempo, durante el período de muestreo en litros por segundo (L / seg)
C $\quad=$ Concentración de sustancias contaminantes en miligramos por litro (mg / l)
0.0864 = Factor de conversión de unidades
$t \quad=$ Tiempo de vertimiento del usuario, en horas por día (h)

- Sustancias Contaminantes Objeto del Cobro de Tasas Retributivas

El Ministerio del Medio Ambiente, estableció las sustancias objeto del cobro de la tasa retributiva por vertimientos puntuales y los parámetros de medida

[^13]de los mismos de acuerdo con la Resolución 273/97, las sustancias establecidas para el cobro de la tasa retributiva son las siguientes:

Demanda Bioquímica de Oxígeno DBO_{5}
Sólidos Suspendidos Totales SST

- Cálculo de la carga total contaminante (DBO_{5} y SST) Vertida en la Cuenca Baja Arroyo Grande

Una vez estimada las cargas individuales de todos los vertimientos puntuales en el recurso hídrico, se deberán sumar las cargas individuales en DBO_{5} y SST, para estimar la carga total vertida por semestre y contaminante.

6.2.4 Cartografía

Esta actividad se documenta en la información existente, y a través de visitas de comprobación del área de estudio complementada con planchas de la carta básica del IGAC.

La información cartográfica está conformada por:

- Mapa base del área de estudio
- Mapas de cada municipio perteneciente al área de estudio
- Croquis levantado en el sitio de ubicación de los Sistemas de Tratamiento de Aguas Residuales Municipales.

6.3 ANÁLISIS DE LA INFORMACIÓN

Para el análisis de la información se empleó el programa de Microsoft Excel, con el fin de reducir, resumir, organizar, evaluar e interpretar la información obtenida, durante la realización del monitoreo ambiental de los Sistemas de Tratamiento de Aguas Residuales de los municipios de Los Palmitos, Sincé y Betulia.

7 RESULTADOS Y ANÁLISIS

Los resultados y análisis se presentan en dos secciones, la primera constituye todo lo relacionado en cuanto a la información existente en torno a los aspectos socioeconómicos y biofísicos, referenciado a las características físicas generales, representativas de la Cuenca Baja Arroyo Grande, así mismo en los aspectos socioeconómicos, se hace referencia a los municipios asentados en la cuenca Baja Arroyo Grande.

La segunda parte, comprende la identificación del componente ambiental el cual se realizó a través de la metodologia aplicada para tal fin; en esta sección se organizan los resultados de la caracterización realizada a las aguas residuales urbanas, que generan los centros poblados y, que vierten luego del tratamiento primario a los cuerpos de agua, afluentes del Arroyo Grande, en lo que conforma el área de la Cuenca Baja Arroyo Grande.

7.1 ASPECTOS FÍSICOS DE LA CUENCA BAJA ARROYO GRANDE

Se identifican los siguientes elementos naturales referentes a la geología, geomorfologia, fisiografia y suelos, clima, zonas de vida e hidrología.

7.1.1 Geología

Los materiales geológicos presentes en el área de estudio son en su mayoria de origen sedimentario, los cuales se depositaron durante el terciario y el cuaternario.

La formación presente en la zona Nor-este de la cuenca, es representativa del mioceno (formación el Carmen) y consta de lutitas, arcillolitas, areniscas y conglomerados; los suelos resultantes son arcillosos y se agrietan en verano (IGAC, 1998)

La zona Nor-este corresponde a un cuaternario antiguo disectado, se localiza al Oriente del eje Chinú - Corozal - El Piñal, cuyos materiales son de arcillas subyacentes, arenas, cascajos, cantos redondeados del pleistoceno pertenecientes a la formación Betulia

7.1.2 Geomorfología

La geomorfología se discute siguiendo lo establecido por Zink (1988-1989) ${ }^{19}$, en el ámbito de paisaje, tipos de relieve o en asociación, la zona de interés para este estudio se encuentra enmarcada dentro de la jerarquización paisaje de lomerío y corresponde a una repetición de lomas altas alargadas, separadas por una red hidrográfica moderadamente densa.

En el lomerío derivado del cuaternario antiguo disectado, el ambiente morfogenético fue depositacional, pero actualmente es erosional. Es un piedemonte disectado, donde las lomas y colinas corresponden al material pre-cuaternario, expuesto después por erosión de la cobertura aluvial original.

Este paisaje de lomerio del cuaternario antiguo se observa en la vía Corozal - Betulia - Sincé - Galeras.

El ambiente morfológico del lomerio en sectores es mixto, es decir, erosional y depositacional y en partes erosional.

[^14]El relieve varía de plano hasta escarpado; como procesos dominan, el escurrimiento difuso y el concentrado (IGAC, 1998)

En el verano, por las carreteras destapadas se forman grandes cortinas de un polvillo blanco - amarilloso, especialmente al centro de la subcuenca Arroyo Grande, y amarillo hacia el Sur, cubriendo y asfixiando la vegetación en las sabanas ${ }^{20}$.

7.1.3 Fisiografía

El área de la cuenca Arroyo Grande, pertenece a tres unidades fisiográficas a saber, la cuenca alta la constituye la subregión Montes de Maria, así mismo la cuenca baja pertenece en gran parte a la subregión sabanas y el tramo final o desembocadura se encuentra localizado en la subregión de San Jorge.

La fisiografía de la zona de estudio constituye el declive general de los Montes de María, hacia la depresión de los ríos Cauca y San Jorge. Se trata de una subregión de numerosas y pequeñas sierras y colinas, sin plegamientos apreciables y con alturas que oscilan entre los $30 \mathrm{~m} . \mathrm{s} . \mathrm{n} . \mathrm{m}$. y 200 m.s.n.m. (IGAC, 1969)

Las praderas regionales del departamento de Sucre, no son sabanas verdaderas, pues no existe una variación climática abrupta, ni hay cambios de suelos o cualquier otra característica que permita catalogarles como tal, la denominación de sabanas más bien corresponde a una fuerte acción del hombre sobre los ecosistemas, representada en tala y quema indiscriminada, para la labranza y posterior introducción masiva de animales de pastoreo ${ }^{21}$.

[^15]
7.1.4 Suelos

La gran mayoría de los suelos ubicados en el área de estudio presentan erosión de ligera a severa, con abundantes cantos rodados y gravilla en la superficie y en el interior del perfil; estos suelos se localizan en los municipios de Sincé y Betulia.

El relieve varía de ligeramente ondulado a moderadamente quebrado, con pendientes de $3 \%, 7 \%$ y 12% y 25%.

El clima de la zona es cálido seco con precipitaciones anuales de 1000 a 1600 mm y una temperatura mayor de $24^{\circ} \mathrm{C}$, la formación vegetal de acuerdo a Holdridge es bosque seco tropical (bs-t)

Los suelos que integran esta asociación se han desarrollado en su mayoría de sedimentos finos y gruesos, son bien drenados y moderadamente profundos.

En el municipio de Los Palmitos los suelos son superficiales a moderadamente profundos, desarrollados a partir de areniscas calcáreas poco consolidadas, bien a excesivamente drenadas. En algunas áreas muy escarpadas se notan afloramientos rocosos. La erosión se manifiesta por escurrimiento difuso, remoción en masa con un grado ligero a moderado (IGAC, 1998)

En partes del municipio de Sincé y Betulia al pie de las colinas se encuentran suelos de textura fina, con presencia de montmorillonita, por lo que se agrietan en épocas secas, son suelos superficiales de fertilidad moderadamente alta, el drenaje natural es bueno a moderado, presentando escorrentía rápida y drenaje interno lento. AI Sur de Sincé las cimas y laderas de las colinas, la textura es arcillosa con presencia de montmorillonita de coloraciones oscuras.

7.1.5 Clima

Es el característico de una formación alternativa seca y húmeda, representada en sucesiones de bosques primarios, matorrales y grandes áreas de pastizales.

Teniendo en cuenta la temperatura ambiente, se presenta en la zona un clima uniforme cálido, que se incrementa a medida que se avanza hacia la subregión, conformada por el Valle del Río San Jorge, con incrementos a su vez de la humedad relativa (IGAC, 1983)

Las altas temperaturas presentes durante casi todo el año, producen una evaporación elevada de modo que las aguas superficiales sufren el fenómeno de intensa sequía, la temperatura promedio anual está entre $27^{\circ} \mathrm{C}$ y $28^{\circ} \mathrm{C}$, igualmente una precipitación promedio anual que fluctủa entre 1000 y $1600 \mathrm{~mm}^{22}$.

La precipitación demarca tres épocas anuales, que corresponden a una estación seca, equivalente a los primeros meses del año, una húmeda correspondiente a los meses de abril a noviembre, interrumpida por un pequeño verano que se presenta entre los meses de Junio y Agosto.

La distribución de las lluvias en el período anual, tiene incidencia directa en las actividades humanas productivas.

7.1.6 Zonas de vida

La Subregión Sabanas, donde se encuentra ubicada el área de estudio, presenta al menos dos zonas de vida o formaciones vegetales: Bosque seco tropical (bs-t), en la parte limítrofe con la Subregión Montes de Maria, y en la parte media hacia el Este, cercano a las poblaciones de Sampués, Sincelejo,

[^16]Corozal y Sincé; bosque muy seco tropical (bms-t) que incrementa la aparición a medida que se acerca a la depresión del bajo San Jorge.

No obstante, en conjunto esta Subregión puede identificarse como una llanura Subxerofitica, altamente degradada por acción antrópica, con zonas representativas que pueden catalogarse como llanuras Xerofíticas, ubicada hacia los limites con la subregión del Bajo San Jorge.

En resumen se tiene generalmente una caracterización de la zona de humedad semiárida que a medida que avanza hacia el Sudeste, se torna árida.

Los elementos arbóreos más representativos están agrupados en pequeños relictus boscosos de crecimiento secundaria en su mayoría.

7.1.7 Hidrografía

En esta subregión las aguas superficiales son de carácter temporal ocasionando erosión durante las crecientes y dejando visibles durante la época de seguía cauces vacíos profundos de taludes verticales.

El abastecimiento de agua de esta zona se realiza a través del recurso hídrico subterráneo, sin embargo es de común ocurrencia el almacenamiento de agua en estanques, lagos artificiales, denominados "Jagüeyes".

Estos depósitos se usan para satisfacer las necesidades del sector agropecuario y de la población humana, especialmente en poblados que aún no cuentan con servicios de acueducto.

El principal cuerpo de agua, de la cuenca Arroyo Grande lo constituye el Arroyo Grande, el cual nace en la confluencia de los Arroyos Caimán y San Miguel, en cercanías de la localidad de Bremen, a una altura de 167 m.s.n.m.

Hace su recorrido de Norte a Sur, recibiendo los afluentes de otros arroyos y corrientes menores que descargan tanto en su margen derecha como izquierda, a lo largo de su recorrido intercepta los municipios de Sincelejo, Corozal, Betulia, Sincé y Galeras.

Otros municipios tienen relación directa a través de afluentes importantes tales como: Arroyo Morroa, Arroyo Caracoly (Los Palmitos), Arroyo Quita Calzón (Betulia) y los Arroyos La Bodega y la Ceja (Sincé)

7.2 ASPECTOS SOCIOECONÓMICOS DE LOS MUNICIPIOS ASENTADOS EN EL AREA DE ESTUDIO

7.2.1 Información social

- MUNICIPIO DE LOS PALMITOS

Ubicado en el Norte del Departamento de Sucre, entre las coordenadas $9^{\circ} 23^{\prime}$ latitud Norte y $75^{\circ} 16^{\prime}$ Iongitud Oeste y alturas que oscilan entre 60 m.s.n.m. y 175 m.s.n.m.

Este municipio ocupa una extensión de $218 \mathrm{~km}^{2}$ representada en su gran mayoría por la zona rural. Sus principales corregimientos son: El Piñal, Sabanas de Pedro, Palmas de Vino, El Coley, Naranjal y Sabanas de Beltrán; de los cuales se derivan otras veredas y caseríos.

Demografía:

La población total del municipio es de 26.480 habitantes donde el 68% corresponde al área rural y el 32% al área urbana ${ }^{23}$, con una tasa de crecimiento anual del 0.090 (9%); en el ámbito urbano existen 1.300 viviendas y 2.298 , en el sector rural para un total de 3.598 viviendas.

[^17]
Educación:

El municipio cuenta con una población en edad escolar (3-17 años) de 7.430 jóvenes; 37.8% en el casco urbano y el resto (62.2\%) en el área rural. Existen actualmente 43 centros educativos de carácter oficial, distribuidos 36 en zona rural y 8 urbana.

En primaria existen 4 en zona urbana y 36 en zona rural; de secundaria hay 3 en área urbana y una en área rural. La población analfabeta es de 4.725 personas; 1.921 en el área urbana y 2.804 en área rural.

Salud:

Actualmente el Municipio cuenta con un Centro de Salud en la cabecera municipal y 7 en el área rural, también opera una I.P.S. (Divino Niño) que presta servicios de Régimen Subsidiado y Régimen Contributivo, además de un consultorio médico y laboratorios bacteriológicos privados.

Servicios Públicos:

El servicio de energía eléctrica abarca el 95% de cubrimiento en todo el municipio; la cobertura del acueducto es del 98\% a nivel urbano; el cubrimiento urbano del alcantarillado es del 70%, aunque sólo tiene instalación domiciliaria un 40%, el cual recoge las aguas residuales y las conduce a un sistema de tratamiento municipal.

Equipamiento Municipal:

- Un matadero al Sur occidente de la cabecera municipal.
- Plaza de mercado insuficiente para la población.
- Cementerio
- Iglesia católica

- MUNICIPIO DE BETULIA

Este Municipio (San Juan de Betulia), se encuentra ubicado en el Nordeste del departamento, sus coordenadas geográficas son: $9^{\circ} 16^{\prime}$ de latitud Norte y $75^{\circ} 15^{\prime}$ de longitud Oeste, con alturas entre $25 \mathrm{~m} . \mathrm{s} . \mathrm{n} . \mathrm{m}$. y $135 \mathrm{~m} . \mathrm{s} . \mathrm{n} . \mathrm{m}$. y un área total de $226 \mathrm{~km}^{2}$; el 85% es área rural y el 15% urbana.

Este municipio cuenta con 5 corregimientos, 3 caseríos y 9 veredas. Los corregimientos son: Albania, Sabaneta, Villa López, Loma Alta y Hato Viejo.

Demografia:

Según la Secretaría de Planeación Departamental, la tasa de crecimiento es de 0.0234; Existe una población de 14.225 habitantes, con un 55.8% a nivel urbano y 44.2% a nivel rural; el municipio tiene 1.541 viviendas, con un 48% en el área urbana y 52% en el área rural.

Educación:

Existen actualmente 20 establecimientos educativos uno pre-escolar, 15 de primaria, 3 de secundaria y uno de educación no formal, con una cobertura educativa del 69.9\% para pre-escolar, 99.1% primaria, 97.5% secundaria del total del potencial educativo, con un 37% de analfabetismo.

En la zona rural hay sólo un establecimiento de secundaria y 13 de primaria, mientras que en el área urbana hay 2 de secundaria y 2 de primaria.

Salud:

La implementación del Régimen Subsidiado durante el año de 1996 permitió un mayor acceso de la población más vulnerable a los servicios de salud; la situación actual de salud se puede calificar como buena teniendo en cuenta la cobertura obtenida en los últimos años.

Los servicios son prestados por la Red Pública de Salud y particulares.
La Red Pública del Municipio está conformada por 5 puestos de salud en la zona rural y un centro de salud (E.S.E.), en la cabecera municipal que prestan servicios correspondientes al primer nivel de atención.

Servicios Públicos:

El 93% de la población cuenta con energía eléctrica; la cobertura del acueducto es de un 89% en el área urbana, su suministro es sectorizado, en Betulia la empresa encargada es ESAB; el suministro de agua se hace a través de un pozo subterráneo con un caudal de $15 \mathrm{~L} /$ seg.

La cobertura del alcantarillado es del 70\%, además posee dos sistemas de tratamiento mediante el empleo de lagunas de oxidación.

Equipamiento Municipal:

- Mercado público subutilizado
- Matadero
- Cementerio
- Estadio de softbol
- Palacio municipal
- Iglesia Católica
- Casa de la cultura

- MUNICIPIO DE SINCÉ

El Municipio de San Luis de Sincé se encuentra ubicado en el centro geográfico del Departamento de Sucre, (subregión Sabanas), con una latitud Norte de $9^{\circ} 15^{\prime}$ y una longitud Oeste de $75^{\circ} 4^{\prime}$ a una altura de 137 m.s.n.m.

De otra parte la cabecera municipal se encuentra localizada a los $9^{\circ} 15^{\prime}$ de latitud Norte y $75^{\circ} 9^{\prime}$ de longitud Oeste.

Este municipio se encuentra dividido en 11 corregimientos a saber: Perendengue, Granada, Vélez, Valencia, La Vivienda, Bazar, Cocorote, Los Limones, Villavicencio, Moralito y Los Galápagos.

La extensión total del municipio es de $410.56 \mathrm{~km}^{2}$ de los cuales solo el 0.14% conforma el área urbana y más del 99% el área rural por lo que es un territorio eminentemente rural ${ }^{24}$.

Demografía:

El municipio de Sincé cuenta con una población de 37.746 habitantes, de los cuales el 72.4% reside en la cabecera municipal y el 27.6% en el área rural ${ }^{25}$. Cada vivienda tiene un promedio de 6 habitantes.

Educación:

La cabecera municipal cuenta con 7 escuelas de básica primaria de carácter oficial y 2 de orden privado; con una población estudiantil de 3.611 alumnos y al nivel de los corregimientos una población estudiantil de 1366 alumnos (con 20 escuelas) Además posee dos jardines infantiles con 367 preescolares y una escuela de niños especiales con 34 alumnos.

[^18]En cuanto a la secundaria existen 3 instituciones de carácter oficial y 1 de orden privado; 3 en el área urbana y 1 en la zona rural, con una población total de 2.818 estudiantes en el nivel medio.

Salud:
San Luis de Sincé, cuenta con un Hospital de primer nivel que presta los servicios de consulta externa, hospitalización laboratorio, odontología y pequeñas cirugías.

En la cabecera existen tres entidades prestadoras del servicio de salud subsidiado de los estratos uno y dos, son: COMCAJA, COISBU y CAPRECOM; además posee dos centros médicos privados y varios consultorios particulares de odontologia y medicina general.

Servicios públicos:

En lo referente al agua potable, presenta un cubrimiento del 90% en el área urbana, en la actualidad el Municipio se abastece de dos pozos subterráneos, uno con una producción de $15 \mathrm{~L} /$ seg y otro con $35 \mathrm{~L} / \mathrm{seg}$.

El 100% de la población cuenta con energía eléctrica, el servicio de alcantarillado se presta en un 60%, presenta dos sistemas de tratamiento para las aguas residuales.

Equipamiento Municipal:

- Mercado Público, con 36 locales en funcionamiento
- Terminal de transportes
- Matadero Municipal, ubicado en el barrio Cascajalito, se encuentra en mal estado, y sacrifican un promedio de 4 reses/diarias.
- Cementerio, localizado en el perimetro urbano.

7.2.2 Información económica

- MUNICIPIO DE LOS PALMITOS

Municipio ubicado en la subregión de Sabanas, ocupando una extensión de 218 km².

Los sistemas productivos que generan ingresos en este municipio, son los cultivos de tabaco, maiz, yuca, ajonjolí y patilla, con aplicaciones de una moderada tecnología; en la parte pecuaria, la ganadería doble propósito, los cerdos de cría y las aves de corral, aplicando una tecnología moderada y realizando la trashumancia de los ganados en época de sequía, a la zona del San Jorge.

El factor importante que incide en la productividad, es la susceptibilidad de la zona al fenómeno de sequía.

- MUNICIPIO DE BETULIA

Ubicado al Sur occidente del Departamento de Sucre, en la subregión de Sabanas, con un área total de $226 \mathrm{~km}^{2}$, centro piloto en el secado natural de yuca con 22 agroindustrias que procesan en forma estacional la producción de la región; Existen 16 plantas picadoras que las explotan bajo la modalidad de cooperativas o asociaciones de productores ${ }^{26}$.

Los sistemas productivos que generan ingresos económicos y mano de obra, son los cultivos de maiz, yuca, ñame; predominando el arreglo yuca / maiz y en áreas donde es posible se cultiva el arroz mediante la modalidad de secado tradicional y a chuzo, aplicando una tecnología moderada, le sigue la

[^19]ganadería doble propósito con trashumancia, los cerdos de cría y las aves de corral explotadas en forma tradicional. Cabe anotar que también cuenta con una variedad de microempresas familiares, como son: La producción de quesos, diabolín, bollo dulce, entre otros.

El factor limitante de los sistemas productivos es la sequía en épocas de verano.

- MUNICIPIO DE SINCÉ

Municipio ubicado en la subregión de sabanas, con una extensión de $410.56 \mathrm{~km}^{2}$.

La economía de este municipio gira en torno a la ganadería doble propósito, con trashumancia donde se aplica una moderna tecnología, seguida de los cultivos de yuca, maíz, ñame, ajonjolí, arroz y algodón, en algunas zonas se presentan empresas de producción artesanal de queso picado y amasado, se utiliza el subproducto denominado "Suero dulce" para alimentar a los cerdos de cría.

Existen en el municipio varias microempresas dedicadas a procesar productos lácteos, que contribuyen a incrementar los ingresos económicos de los habitantes del municipio.

Es de gran importancia anotar, que estos municipios están enmarcados dentro de una región cuya economia básicamente gira en torno al sector agrícola y pecuario, con aplicación tecnológica moderada a baja, presentando limitaciones por la rentabilidad climática y como si fuera poco padeciendo de la indiferencia de las administraciones públicas, quienes no implementan políticas claras que subsanen la problemática presentada.

7.3 COMPONENTE BIÓTICO ÁREA DE INFLUENCIA SISTEMA DE TRATAMIENTO AGUAS RESIDUALES

7.3.1 Vegetación

La flora encontrada en la zona de influencia de los sistemas de tratamiento estudiados se resumen en la siguiente tabla.

Tabla 1. Vegetación asociada al área de influencia de los sistemas de tratamiento de aguas residuales

NOMBRE COMUN	NOMBRE CIENTIFICO	AREA DE INFLUENCIA				
		LP	B1	B2	S1	S2
Camajón	Sterculia Apetala	X	X	X		X
Orejero	Enterocelobium sp	X		X	X	
Guayacan	Tubebuia Chrysantha	X		X		X
Polvillo		X		X		X
Campano	Sammanea Saman	X	X	X	X	X
Uvero	Coccoloba sp	X	X		X	
Ñipi ñipi			X	X		X
Mamón	Melicocca Bijuga	X				X
Ceiba	Ceiba Pentandra	X	X	X	X	X
Hubo	Sponaias Mombis	X	X	X	X	X
Pata de vaca		X	X			
Huevo de barraco				X	X	X
Limoncillo	Citrus Aurantifolia	X	X			
Totumo	Crescentia Cujete	X	X	X	X	X
Matarratón	Glincióa Sepium	X	X	X	X	X
Carbonero	Calliandria Pitieri	X	X	X	X	X
Guacamayo	Albizzia Guachepelle	X		X		X
Higo	Firus Magdalelinica		X		X	X
Olivo				X	X	
Santa cruz	Astonium Graveloens		X	X		
Majagua	Escweikerasp	X	X		X	X
Divi divi	Libidibia Coriaria			X		X
Cadillo	Tridax Procumbens	X	X	X	X	X
Kikuyo	Brothyochloa Pertuza	X	X	X	X	X
Guinea	Panicum Maximun Jacq	X		X	X	
Dormidera	Mimosa Puaica	X	X	X	X	X
Campanilla	loomoea spp		x	X	X	
Escobilla	Sida Cuta	X	X	X	X	X
Bicho	Cassia Tora		X	X	X	X
Angletón	Dichantium Aristatum	X	X	X	X	X

Continuación Tabla 1
Vegetación asociada al área de influencia de los sistemas de tratamiento de aguas residuales

Pringamosa	Hatropa Urens			X	X	X
Malba	Malachia Alccifolia	X	X	X	X	X
Zarza	Mimosa Pigra	X	X	X	X	X
Rabo de Alacrán	Eliutropium Indicum	X	X	X	X	X
Balsamina			X		X	

De las observaciones de campo se puede afirmar que en las distintas áreas de influencia de los sistemas de tratamiento de los municipios estudiados existen diversos tipos de cobertura vegetal, representados en mayor porcentaje por pastizales y seguidos de pastizales enmalezados, rastrojos y relictus boscosos; estos últimos en los actuales momentos son escasos, aunque espesos en los sitios donde se encuentran y están constituidos fundamentalmente por especies nativas.

7.3.2 Fauna

Las diferentes especies animales asociadas al área de influencia de los sistemas de tratamiento serán discriminados a continuación como Aves, Mamiferos y Reptiles.
Tabla 2. Fauna asociada al área de influencia de los sistemas de tratamiento de aguas residuales

NOMBRE COMUN	NOMBRE CIENTIFICO	AREA DE INFLUENCIA					
		LP	B1	B2	S1	S2	
AVES							
Gallito de ciénaga		Jacona Americana	X	X	X	X	X
Garzas	Egretta Thilla	X	X	X	X	X	
Tortolita	Streptopelia Turtur	X	X	X	X	X	
Carrao	Aramus Guarauna	X	X			X	
Pisingo	Dendrocigna Autumnalis		X	X			
Barraquete	Ana Discors	X	X	X	X	X	

Continuación Tabla 2

Fauna asociada al área de influencia de los sistemas de tratamiento de aguas residuales.

Gallinazo	Sarcorauphus Papa	X	X		X	X
Cocinera	Grotophaga Minor	X	X	x	X	X
Gavilan	Heterospizias Meriaionalls	X		X		X
Golondrina	Hirundo Rustica			x		X
Gallineta	Tinamus Major	X		x		X
Cheja	Ara Severa	X	X	X	x	X
MAMÍFEROS						
Reces	Bos Taurus	X	X	x	x	X
Cerdos	Sus Scrofa Domisticus	X	X		X	
Cabras	Capry Bemitragus		X			
Caballos	Equus Caballus	x	x	x		x
Zorra Chucha	Didelphis Marsupihiales	X	X		x	
Rata de Campo	Zigodontomis Brevicauda	X	X	x	X	x
Conejo	Sy/vilangus Floridanus	X	X	X	X	X
Ardilla	Sciureus Granatensis	X	X	x	x	
REPTILES						
Babilla	Caiman Crocodylus	X		X		X
Iguana	Iguana Iguana	X	X	x	x	X
Lobo Pollero	Tupinambis Nigropunctatus	X		x		X
Galapago	Podecriemis sp	X	X	X	X	X
Boa	Boa Constrictor	X	X		x	
Guarda Camino	Driodaphis sp	x	X	x	x	
Lagartija	Chemidophours Lemiscatus	X	X	X	X	X

NOTA: LP = Los Palmitos; B1 = Betulia-1; B2 = Betulia-2; S1 = Sincé-1; S2 = Sincé-2.

De las observaciones en campo e información suministrada por moradores del lugar, podemos decir que este recurso es bastante escaso, como consecuencia de la caza indiscriminada y la forzosa emigración de especies por las continuas talas y quemas de bosques y posterior transformación de grandes extensiones de terrenos en potreros con fines de explotación agropecuaria.

7.4 DETERMINACION DE LA CARGA CONTAMINANTE VERTIDA EN LA CUENCA BAJA ARROYO GRANDE

7.4.1 Caudales de Aguas Residuales

Es necesario conocer el caudal de aguas residuales, con el fin de calcular la carga de los parámetros medidos. Por ello el sitio de medida del caudal debe estar íntimamente relacionado con el de muestreo.

Tabla 3. Resultado de las mediciones "in situ" caudales de aguas residuales MUNICIPIO DE LOS PALMITOS

Punto de muestreo	Lag Oxid Los Palmitos									Sector . Ay. Caracoli	
Horas Fechas	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	Caudal Medio Useg	$\begin{gathered} \text { Caudal } \\ \text { Promedio } \\ \text { L/seg } \end{gathered}$
16/10/00	6,44	5.69	5.72	5.69	6.12	5,9	5.85	6,09	6,33	5,98	
17/10/00		6.12	5.58	5.69	5,4	5,9	5.69	5,4	5,72	5,69	Lospalmitos
18/10/00	6.11	5.85	5.72	5,35	5.72	5,85	5,34	5,46	3.51	5,43	5,63
19/10/00	6.91	6.91	6.02	5,28	4,19	4,1	5,06	5	5,63	5,46	
20/10/00	8,05	5.59	5.89	5,89	6,17	5,4	6,02	3,44	3,86	5,59	

Podemos anotar que los caudales máximos se presentan en las primeras horas de la mañana como producto de las diferentes actividades cotidianas realizadas por la población .

Figura 8.a Variación diaria de los caudales de Aguas Residuales Urbanas

De la grafica se observa que al iniciar y finalizar la semana los caudales aumentan producto de las actividades típicas de la jornada laboral.

Tabla 4. Resultado de las mediciones "in situ" caudales de aguas residuales MUNICIPIO DE SINCE

Purto cemuestreo	Lag. Oxidacion Since-1									Sector. Ay La Bodega	
Feches Horas	08:00	0900	10:00	11:00	1200	13:00	14:00	15:00	16.00	Medio Useg	Promedio Useg
23/102000	18.24	17.71	11.23	8.c9	5.11	4.17	8.13	8.85	8.75	10.C3	Q
24102000	20.33	1283	7.47	4.71	3.72	7.99	6.39	8.67	5.75	861	Snoe-1
25/102000	181	1372	1246	9.81	8.07			5.13		1243	9.632
26102000	17.29	1371	7.22	7.38	9.32	7.01	6.28	5.81	5.74	886	
27/102000	10.64	11.22	15.3	102	8.15	5.59	4.28	4. $\%$	4.36	823	
Purto cee muestreo	Lag. Oxidacion Since-2									Sector. Ay. La Ceja	
23102000											Q
24102000	1.88	234	1.43	1.57	23	2.52	2.5	265	3.26	226	Snee-2
25/102000	222	22	1.91	2.8	2.18	2.25	2.5	45.47		217	227
$26 / 102000$	222	236	239	2.27	2.14	1.89	1.58	2 C	2.18	217	
27/102000	218	245	1.91	2.38	2.21	286	2.84	$2 \varepsilon^{2}$	2.72	248	

Es de resaltar que el tercer dia de monitoreo en este municipio se presento una fuerte lluvia, notándose un gran aumento del caudal afluente; por lo cual podemos decir que el sistema de alcantarillado de Sincé presenta conexiones erradas de aguas lluvias al sistema de alcantarillado municipal.

Figura 8.b Variación diaria de los caudales de Aguas Residuales Urbanas.

En la laguna de oxidación Sincé 1 se presentan los mayores registros de caudal de los dos sistemas, puesto que hacia este sector llegan las aguas residuales de la mayoría de conexiones actuales al alcantarillado municipal.

Tabla 5. Resultado de los caudales de aguas residuales MUNICIPIO DE BETULIA

Punto de muestreo	Lag. Oxidacion Betulia - 1									Sector . Ay. Grande	
Horas Fechas	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	$\begin{aligned} & \text { Caudal } \\ & \text { Medio } \\ & \text { Useg } \end{aligned}$	$\begin{gathered} \text { Caudal } \\ \text { Promedio } \\ \text { L/seg } \end{gathered}$
31/10/00			2,74	2,74	2,74	2,45	2,51	2,74	2,74	2,66	Q
01/11/00	2,74	2,51	2,74	2,45	2,12	2,45	1,54	2,12	2,12	2,31	Betuia-1
02/11/00	5,09	4,52	3,2	2,43	3,03	3,16	3,41	2,03	2,27	3,24	3,1125
03/11/00	5,52	5,69	6,69	4,84	3,75	3,33	3,01	2,63	2,69	4,24	
Punto de muestreo	Lag. Oxidacion Betulia -2									Sector . Ay . Quita calzon	
31/10/00			3,98	4,12	2,84	2,58	3,67	4,45	4,65	3,75	$\underset{\text { Betuia-2 }}{\mathbf{Q}}$
01/11/00		3,46	3,5	4,21	3,01	2,87	5,14	4,37	4,78	3,92	
0211/00	4,37	4,49	3,84	3,34	3,27	4,23	4,58	4,18	4,93	4,14	3,9525
03/11/00		5,06		4,46		3,8		2,69		4	

Figura 8.c Variación diaria de los caudales de Aguas Residuales Urbanas

Los dos sistemas de tratamiento del municipio de Betulia presentan caudales horarios que se encuentran en el rango de $2-6 \mathrm{~L} / \mathrm{seg}$, con promedios diarios muy similares. lo causal del anterior resultado es que a los dos sectores esta llegando el mismo porcentaje de las aguas residuales generadas por el municipio.

Tabla 6. Caudales promedio de aguas residuales municipales.

MUNICIPIO	CAUDAL PROMEDIO	CUERPO RECEPTOR
LOS PALMITOS	5,63	Ay. Caracoil
	9,63	Ay. La Bodega
	2,27	Ay. La Ceja
BETULIA	3,11	Ay. Grande
	3,95	Ay. Quita calzon

7.4.2 Caracterización Aguas Residuales Urbanas

El propósito de un análisis de agua es el de evaluar las propiedades de una matriz (en este caso aguas residuales urbanas), cuyos resultados deben ser de alta calidad y confiabilidad y adecuados al propósito para el cual fueron solicitados, ya que con base en esta información se toman importantes decisiones en materia de legislación, medidas de mitigación, control y protección del medio ambiente las cuales están regidas por normas y regulaciones de carácter oficial.

Tabla 7.Resultados de los promedios diarios de parámetros registrados "in situ" y análisis de laboratorio de las A. R. Afluentes a los sistemas de tratamiento municipal

Punto de Muestreo		Los Palmitos					Since-1 / Since-2					Betulia-1 / Betulia-2				
FECHA		OCTUBRE					OCTUBRE					OCTUBRE		NOVIEMBRE		
Parametros	Dias	16	17	18	19	20	23	24	25	26	27	30	31	1	2	3
	Unidades						8.36	8.22	8.1	8.07	7.59		7.9		9.04	9.04
pH	U		6.59	6.64	7.14				8.02	7.99	7.8			8.9		8.57
							30.1	29.7	29.4	29.9	30		29.4	29.2	28.8	29.8
Temperatura	${ }^{\circ} \mathrm{C}$	29.8	30.3	29.1	30.3	29.8		30.5	29.5	29.1	30.1			29.7	29.4	29.6
							1491	1663	1574	1920	1536		1459		2020	1294
Conductividad	umhos/cm		917	787	802	832			1310	1139	1472			1786		1499
							0.8	0.7	0.6	0.5	0.77		0.6		0.98	0.6
Salinidad	\%		0.4	0.4	0.4	0.4					0.7			0.8		0.5
							699	807	915	1023	723		623		962	633
Solid. Dis.	mg / L		434	377	385	398					716			795		701
							390	490		420	415		397.5	292.5	385	405
Alcalinidad	mgCaCO 3	287.5	295	265	282.5	300		391		395	378		420	435	413	420
Acidez a la							30	36		41	38		48	46	42	47
Fenolftaleina	mgCaCO 3	32	33	29	34	30		28		30	32		36	46	38	42
							130	130		105	105		140	135	130	130
Turbidez	UNT	114	110	120	110	120		130		120	130		110	110	115	110
							20	25		25	20		20	20	20	20
Color	U pt Co	25	25	25	30	25		20		25	25		20	25	25	25
							204	320		261	188		315	345	335	365
DBO5	mg / L	255	188	197	206	207		300		290	320		239	231	239	217
							688	552		680	46			540	516	620
DQO	mg / L	384	640	544	536	504		624		628	416		232	269	244	260
							0	0.2		1.1	0		0.5	0	0.2	0
OD	mg / L	0.4	1.6	2.7	1.4	2.2		0		0.2	0		0	0	0.5	0
							1032	1078		1106	1090		1574	1592	1620	1564
S.T	mg / L	846	818	789	792	752		1280		1336	1314		1048	1092	978	1064
							144	138		140	130		344	358	394	381
SST	mg / L	208	196	189	210	197		298		224	202		226	231	246	238

Tabla 8. Características fisicoquímicas de las aguas residuales vertidas luego de tratamiento primario a los cuerpos de aguas del área de interés

Punto de Muestreo		Los Palmitos					Sincé-1/ Sincé - 2					Betulia-1 / Betulia-2				
FECHA		OCTUBRE					OCTUBRE					OCTUBRE		NOVIEMBRE		
Parametros	Dias	16	17	18	19	20	23	24	25	26	27	30	31	1	2	3
	Unidades						8.78	8.58	7.64	7.78	7.86		7.6		9.45	9.7
pH	U		6.94	6.87	7.1				8.54	8.2	8.43			10.06		9.06
							29.7	29	28.5	29.6	28.8		29.3	29.7	28.1	28.8
Temperatura	${ }^{\circ} \mathrm{C}$	30.9	32.9	28.3	32	30.7		29.5	29.3	29	29.3		30	29.9	27.9	29.9
							1448	1412	1459	1436	1457		1289		1231	1266
Conductividad	umhos/cm		837	844	852	860			1007	1051	1635			845		890
							0.7	0.6	0.7	0.7	0.7		0.6		0.6	0.6
Salinidad	\%0		0.4	0.4	0.4	0.4			0.5	0.5	0.5			0.4		0.4
							689	687	719	699	712		575		572	584
Solid. Dis.	mg / L		399	405	410	412			486	514	495			387		429
							264	268		280	275		372.5	370	365	380
Alcalinidad	mgCaCO 3	327.5	324.2	312.5	327.5	327.5		371		383	350		287.5	292.5	295	310
Acidez a la							22	22		26	25		32	28	28	26
Fenolftaleina	mgCaCO 3	30	31	30	34	32		24		22	24		24	34	24	26
							82	81		78	86		38	35	37	32
Turbidez	UNT	105	105	110	103	108		82		83	86		37	35	34	36
							25	25		20	25		30	25	25	25
Color	Upt Co	20	20	20	20	20		25		20	20		35	35	35	35
							101	59		54	31		50	51	47	53
DBO5	mg / L	101	70	77	61	81		49		87	117		61	65	57	50
							488	288		308	160		46	84	60	64
DQO	mg / L	208	232	264	312	272		120		148	232		63	74	64	68
							5.1	3.6		1.8	3.5		3.3	3.9	6.6	6.6
OD	mg / L	3.8	4.7	3	6	7		2.3		1	0.5		7.7	6.6	4	6.9
							679	652		684	678		704	656	73	680
S.T	mg / L	632	589	592	584	628		832		942	950		586	5.82	524	554
							62	54		56	72		58	52	56	61
SST	mg / L	116	92	97	101	104		124		126	128		72	69	62	54

Los resultados obtenidos de las diferentes pruebas de campo y laboratorio realizadas al afluente y efluente de cada uno de los sistemas de tratamiento de los municipios estudiados, se muestran a continuación tratando en lo posible de presentarlos en forma de registro grafico, para que su comprensión sea mas fácil.

Figura 9.1 Variación de los parámetros "in situ" (pH, Temperatura, Conductividad, Sólidos Disueltos)

Afluente Laguna de Cxidación Betulia - 1

$$
\rightarrow-\mathrm{pH} \quad(\mathrm{U}) \rightarrow \text { Temperatura } \quad\left({ }^{\circ} \mathrm{C}\right) \multimap \text { Conductividad } \quad(\text { umhos } / \mathrm{cm}) \quad \rightarrow-\text { Solid. Dis. }(\mathrm{mcl})
$$

Figura 9.2 Variación de los parámetros analizados en laboratorio (Alcalinidad, Acidez a la fenolftaleína, Turbidez, Color)

Tabla 9. Concentraciones promedios de aguas residuales urbanas afluentes a los sistemas de tratamiento municipal.

M UNICIPIOS		LOS PALM ITOS	SINCE		BETULIA	
Punto de muestreo Parametros		Lag. Oxid Los palmitos	Lag Oxid Since - 1	Lag. Oxid Since - 2	Lag. Oxid Betulia-1	Lag. Oxid Betulia-2
		A fluente	A fluente	A fluente	A fluente	Afluente
pH	$\begin{gathered} \hline \text { Unidades } \\ U \\ \hline \end{gathered}$	6,79	8,07	7,94	8,66	8,73
Temperatura	${ }^{\circ} \mathrm{C}$	29,9	29,8	29,8	29,3	29,7
Conductividad	umhos/cm	834	1637	1307	1591	1642
Salinidad	\%	0,4	0,8	0,6	0,7	0,6
Solid. Dis.	mg / L	398	765	635	739	748
Alcalinidad	mgCaCO 3	286	429	388	370	422
Acideza la Fenolftaleina	mgCaCO 3	32	36	30	46	40
Turbidez	UNT	115	117	127	134	111
Color	Uptco	26	22	23	20	24
DBO_{5}	mg / L	210	243	303	340	231
DQO	mg / L	521	599	556	558	251
O.D	mg / L	1,6	0	0	0	0
S.T	mg / L	679	1076	1310	1587	1020
SST	mg / L	200	130	241	369	235

Comparando los resultados de las concentraciones promedios del afluente de cada sistema de tratamiento con la composición típica del agua residual cruda (según Metcalf \& Eddy, ver cuadro $N^{\circ} 2$); podemos anotar que :

El pH en todos los sistemas se puede catalogar como fuette, presentando el menor valor las aguas residuales del municipio de los Palmitos.

Los sólidos disueltos están en el rango de concentración de medio a fueríe donde el afluente de la laguna de oxidación Los Palmitos es el que mas se acerca al punto débil de concentración.

En cuanto a la alcalinidad todos los afluentes de los sistemas presentan concentraciones muy por encima del valor catalogado como fuerte, apropiándose nuevamente el afluente de Los Palmitos del menor valor.

De la turbidez podemos decir que los resultados de las aguas residuales de cada municipio se mueven en el rango de concentración fuelte, registrando el menor valor la laguna de oxidación Betulia -2 .

La DBO_{5} fluctúa en los grados de concentración meaio a fuette en todos los sistemas, el afluente que registra el menor valor es el de Los Palmitos.

La DQO en los sistemas de Los Palmitos, Sincé - 1 y 2 y Betulia - 1 esta en el grado de concentración meaia, y el sistema Betulia - 2 en el grado aébil

En cuanto a los ST podemos anotar que las aguas residuales de Los Palmitos tienen una concentración media, mientras que las de los restantes municipios se pueden catalogar como aébil.

Los SST oscilan entre concentraciones meaias y fueltes en todos los afluentes de los sistemas, siendo el de la laguna de oxidación Sincé - 1 el que presenta el menor valor registrado.

Como se puede notar, las aguas residuales del municipio de Los Palmitos son las que presentan el menor riesgo de contaminación antes de ser sometidas a tratamiento, reflejado en el moderado grado de concentración que arrojó el análisis fisicoquímico de los parámetros en relación. Lo anterior es el producto de que en los municipios de Sincé y Betulia se presenta una mayor variedad de microempresas del sector agroindustrial como es el caso de las procesadoras de productos lácteos y agrícolas propios de la región, aumentando con sus aportes residuales al alcantarillado municipal las concentraciones de contaminantes de las aguas residuales.

Tabla 10. Características promedio de aguas residuales vertidas a los cuerpos de agua superficiales

MUNICIPIOS		DEC 1594/84		$\begin{array}{\|c\|} \hline \text { LOS PALMITOS } \\ \hline \text { Arroyo } \\ \hline \end{array}$	SINCE		BETULIA	
Punto de muestreo Farametros		M aximo	M aximo		Arroyo	Arroyo	Arroyo	Arroyo
		Sugerido	Exigido	Caracoll	La Bodega	La Ceja	Grande	Qulta Calzon
pH	$\begin{gathered} \hline \text { Unidades } \\ U \\ \hline \end{gathered}$	6.5-8.5	5-9	6,97	8,13	8,39	8,92	9,56
Temperatura	${ }^{\circ} \mathrm{C}$	35		31	29,1	29,28	29	29,4
Conductividad	umhos/cm	100		848	1442	1231	1262	868
Salinidad	\%			0,4	0,7	0,5	0,6	0,4
Solid. Dis.	mg / L	16000		407	701	498	577	408
Alcalinidad	mgCaCO 3	50	200	324	272	368	372	296
Acideza la Fenolftaleina	mgCaCO 3			31,4	23,8	23,3	28,5	27
Turbidez	UNT	5	25	106	81,8	83,7	35,5	35,5
Color	Uptco	10	75	20	24	22	26	35
DBO_{5}	mg / L	$>80 \%$	en carga	78	61	84	50	58
DQO	mg / L	$>80 \%$	en carga	257	311	166	63	67
O.D	mg / L	4		4,9	3,5	1,3	5,1	6,3
S.T	mg / L			605	673	908	692	561
SST	mg / L	500	1500	102	61	378	57	64

En la Tabla 10, reflejamos los valores medios de cada parámetro analizado a las aguas residuales vertidas a los cuerpos de aguas superficiales durante el periodo estudiado (Oct 16 - Nov 3 del 2000), además de los valores máximos admisibles para cada parámetro según la legislación vigente (Dec 1594/84).

De acuerdo con el decreto 1594/84 del Ministerio de Salud en lo que respecta a las disposiciones sanitarias sobre aguas; los siguientes parámetros analizados sobre pasan los valores máximos admisibles :

El pH se encuentra en el limite del rango, siendo el vertido que se realiza al Arroyo Quita Calzón el que sobrepasa el limite exigido.

La conductividad adquiere valores excesivamente altos en las aguas residuales vertidas a los Arroyos La Bodega, La Ceja y Arroyo Grande.

La turbidez ve sobrepasado su valor máximo admisible en todos los efluentes tratados de los sistemas estudiados.

Los datos sobre temperatura, sólidos disueltos, acidez a la fenolftaleina y color se mantienen dentro de los limites exigidos por la normatividad.

La concentración máxima de $4 \mathrm{mg} / \mathrm{L}$ de Oxigeno disuelto se ve sobrepasada en los vertidos de aguas residuales tratadas que se hacen a los arroyos Caracoly y Quita Calzón

En relación con los niveles de concentración que ingresan las aguas residuales a los sistemas de tratamiento, efectivamente se evidencia a través de los resultados del análisis de sus aguas efluentes que estas reciben algún grado de remoción de los agentes contaminantes que las conforman

7.4.3 Calculo de la Carga Total Contaminante (DBO_{5} y SST) Vertida en la Cuenca Baja Arroyo Grande

Tabla 11. Calculo de la carga contaminante diaria aplicando la ecuación contenida en el Art. 3,Dec 901/MMA Tasas retributivas en jurisdicción de CARSUCRE

Parametros		Concentracion Sustarcia Contaminate (mg / L)					$\begin{gathered} \hline \text { Caudal A R } \\ \text { (LSeg) } \end{gathered}$	Carga Contaminante Diaria (Kg/dia)					\% remocion en carga				
		LP	s-1	s-2	B-1	B-2		LP	S-1	s-2	B-1	B-2	LP	s-1	s-2	B-1	B-2
DBOs ${ }^{\text {cemanda Bioquimica de Cxigeno }}$	A	210	243	303	340	231	5,63	10244	26239	59.49	91.36	79	63	75	72	85	75
	E	78	61	84	50	58	$\mathbf{Q}_{\text {Los Falmitos }}$	37.94	50.96	16.54	13.5	19.88					
	A	£21	599	${ }_{5}^{56}$	558	251	$\mathbf{Q}^{\square} 8$	253.4	458.4	109	$149 \leq 4$	8566	51	48	70	89	73
DRO Cemanda Quimica de oxigeno	E	27	311	166	63	67	$\mathbf{Q}^{\mathbf{2 i n c e}-2}$	125	258.8	32.55	16.98	2286					
	A	200	130	241	369	235	$\mathbf{Q}^{\frac{3,11}{\text { Betuiz - }}}$	c7.28	114.82	47.33	cgc8	8029	49	56	41	85	73
SST Solidos Suspendidos Totales	E	102	61	378	5	64	Q $\frac{3,95}{\text { Betuia - } 2}$	49.61	5075	27.71	15.25	21.58					

$L P=$ Los Palmitos; $\mathbf{B - 1}=$ Betulia-1; $\mathbf{B - 2}=$ Betulia-2; $\mathbf{S - 1}=$ Sincé-1; $\mathbf{S}-2=$ Sincé-2
\% Remocion en Carga Contaminante de los Sistemas de Tratamiento

Figura. 10. Resultados \% remoción de los sistemas de tratamiento

De la figura podemos analizar que el único sistema de tratamiento que cumple con los porcentajes de remoción en carga contaminante exigido por la normatividad es Betulia-1, mientras que el sistema de Los Palmitos es el que menos esta cumpliendo con los objetivos para el cual fue diseñado.

Lo que ocasiona el anterior resultado es el abandono en que se encuentran estos sistemas en su proceso de descontaminación por parte de las administraciones pertinentes en cuanto a mantenimientos periódicos que ayuden a estos al cumplimiento de sus objetivos.

Tabla 12. Determinación de las cargas contaminantes vertidas en la cuenca baja arroyo grande

Fuente Regulada	Caudal Aguas residuales (L/Seg)	Poblacion Equivalente (Habitantes)	Carga Contaminante DBO5 SST (Kg/dia) $(\mathrm{Kg} / \mathrm{dia})$		\% Total Carga Contaminante DBO_{5} SST	
Los Palmitos	$\begin{array}{\|c} \mathbf{5 , 6 3} \\ \mathbf{Q}_{\text {los Palmitos }} \\ \hline \end{array}$	3390	37.94	49.61	48.6	47.47
Since		10600	50.96	50.75		
	Q ${ }^{\text {2,27 }}$ Since-2	5700	16.54	27.71	27.32	30.02
Betulia		2778	13.57	15.25		
	$Q \begin{array}{\|c} \hline 3,95 \\ \hline \text { Betulia }-2 \end{array}$	2778	19.88	21.93	24.08	22.8

Cargas Contaminantes Vertidas en la Cuenca Baja Arroyo Grande

\square DBO5 Demanda Bioquimica de Oxigeno \square SST Solidos Suspendidos Totales

Figura. 11 Cargas contaminantes de origen urbano vertidas en la Cuenca Baja Arroyo Grande

El sistema de tratamiento que mayor carga contaminante esta entregando a través de su vertido es el de Sincé - 1, y el cuerpo de agua al que le corresponde recibir esta contaminación es el Arroyo La Bodega; a su vez el efluente del sistema Betulia - 1 es el que menor carga entrega, en este caso al Arroyo Grande.

Lo anterior es la consecuencia del gran numero de instalaciones domiciliarias actuales al alcantarillado que conduce las aguas residuales hacia el sector del sistema Sincé-1, generando de esta manera el mayor caudal registrado de todos los sistemas, el cual se encuentra en relación directa con la carga contaminante vertida.

Figura . 12 Total cargas contaminantes vertidas a los cuerpos de aguas superficiales del área de estudio

Luego de la sumatoria de las cargas individuales en DBO_{5} y SST para la determinación de la carga total contaminante vertida en la Cuenca Baja Arroyo Grande, se identifico que los arroyos La Bodega y Caracoly reciben las mayores cantidades de contaminantes con 50.96 y 37.94 Kg . $\left(\mathrm{DBO}_{5}\right) / \mathrm{día}$ respectivamente
\% Carga Total DBO5 y SST vertida al recurso

Los Palmitos
-DBO5. Los Palmitos पSST. Los Palmitos ■DBO5. Sincé ■SST. Sincé aDBO5. Betulia ■SST. Betulia

Figura. 13 Porcentaje carga total contaminante por fuente regulada

De las fuentes reguladas, el municipio de Sincé aporta el mayor porcentaje en carga contaminante DBO_{5} y SST con un 48.6\% y 47.47\% respectivamente, seguido por el municipio de Los Palmitos el cual hace un aporte del $\mathbf{2 7 . 3 2 \%}$ en DBO_{5} y $\mathbf{3 0 . 0 2 \%}$ en SST, por ultimo Betulia con un $\mathbf{2 4 . 0 8 \%}$ en DBO_{5} y $\mathbf{2 2 . 8 \%}$ en SST.

Este resultado se presenta, debido a la gran diferencia en población generadora de aguas residuales, que existe entre el municipio de Sincé y los dos restantes. El municipio de Sincé presenta una población Aproximada de mas de 15 mil Habitantes; mientras que los municipios de Betulia y Los Palmitos no superan los 5 mil Habitantes. Lo cual refleja la relación directa que existe entre el potencial de población generadora de aguas residuales y su correspondiente carga contaminante.

8 CONCLUSIONES

Uno de los principales problemas en el saneamiento de los cuerpos de aguas que conforman el área hidrográfica de la Cuenca Baja Arroyo Grande, es la carencia de información sobre los niveles de contaminación a lo largo de su recorrido.

Las aguas residuales domesticas en la Cuenca Baja Arroyo Grande se generan básicamente en las zonas urbanas de los municipios asentados sobre su área territorial con una población mayor de 5 mil habitantes.

La localización de los centros urbanos de los municipios, concentra el vertimiento de aguas residuales tratadas en los siguientes cuerpos receptores; Arroyo Caracoly, Arroyo La Bodega, Arroyo La Ceja y Arroyo Quita Calzón, los cuales confluyen al Arroyo Grande.

El caudal total de aguas residuales generadas en la Cuenca Baja Arroyo Grande es de $24.6 \mathrm{~L} / \mathrm{seg}$, con una carga contaminante total correspondiente a $50694.85 \mathrm{Kg}\left(\mathrm{DBO}_{5}\right) /$ año y $60316.25 \mathrm{Kg}(\mathrm{SST}) /$ año.

El sistema de tratamiento que mayor carga contaminante esta entregando a través de su vertido es el de Sincé -1, y el cuerpo de agua al que le corresponde recibir esta contaminación es el arroyo La Bodega; a su vez el efluente del sistema Betulia - 1 es el que menor carga entrega, en este caso al Arroyo Grande.

Se alcanzan niveles moderados de remoción en carga contaminante en las cinco lagunas de oxidación presentes en la Cuenca Baja Arroyo Grande, únicamente se encuentra operando de forma adecuada el sistema lagunar Betulia - 1, con mas de un 80% en remoción de contaminantes, mientras que el sistema de Los Palmitos a duras penas alcanza un 60% en remoción.

Entre los problemas técnicos que impiden el uso eficiente de los sistemas de tratamiento de aguas residuales se identificaron: diseño inadecuado de los sistemas con relación a los afluentes; ubicación inadecuada de las redes de alcantarillado; obras inconclusas (redes de alcantarillado, vertederos, sedimentadores, aforadores); falta de cercados adecuados que impidan el acceso de personas y animales.

Todos los sistemas de tratamiento de aguas residuales de los municipios asentados en la Cuenca Baja Arroyo Grande se encuentran en total abandono por parte de las administraciones municipales de turno.

9 RECOMENDACIONES

Para dar una posible alternativa de solución al problema de la contaminación por aguas residuales, debe elaborarse en coordinación con los diferentes sectores ${ }^{27}$ que integren el Sistema Nacional Ambiental (SINA), un programa de saneamiento ambiental de arroyos deteriorados, en el que contemplen varias acciones, una de ellas bajo la responsabilidad de las EMSP ${ }^{28}$ en donde le corresponda fijar las condiciones particulares de descarga a las Agroindustrias (Explotaciones Porcícolas, Empresas Productoras de Quesos) Estaciones de servicios, Talleres industriales entre otros, es decir la calidad de agua que debe descargar cada fuente regulada al sistema de alcantarillado municipal.

Teniendo en cuenta que el agua es el eje articulador en el Plan Colectivo Ambiental se hace necesario que todos los sectores involucrados en la región deban trabajar de manera conjunta, con el objeto de mejorar sus capacidades para recolectar datos sobre la calidad del agua, organizar la información y reportar los resultados del monitoreo, para que en el futuro, mejores proyectos sean elaborados.

[^20]Las lagunas de oxidación tienen requerimientos operacionales y de mantenimiento mínimos que, sin embargo, deben revisarse y cumplirse periódicamente por la entidad responsable de su administración y control, con el objeto de eliminar los problemas que frecuentemente se presentan en estos tipos de sistema de tratamiento de aguas residuales; sin una efectiva administración y recolección de datos suficientes, el sistema lagunar ira poco a poco disminuyendo su eficiencia hasta deteriorarse en poco tiempo.

Deben desarrollarse, mantenerse y evaluarse campañas públicas de educación. Es importante promover el interés por la conservación del agua entre el público en general, enfocando de una manera apropiada el mensaje. Además debe explorarse la posibilidad de involucrar al sector privado tanto en la responsabilidad de la educación pública como en la administración del agua.

REFERENCIAS BIBLIOGRAFICAS

AGUAS LIMPIAS PARA COLOMBIA AL MENOR COSTO. Implementación de las Tasas Retributivas por Contaminación Hídrica, Documento Oficina Análisis Económico del Ministerio del Medio Ambiente, 1997

CASTAÑEDA N, Jaime León. y Et al . Estudio de Impacto Ambiental de Las Lagunas de Oxidación en el Municipio de San Marcos. Tesis de Postgrado, Universidad de Sucre. 2000

CORPORACION AUTONOMA REGIONAL DE SUCRE. CARSUCRE.

Estudio de los Impactos que Genera el Tratamiento de Aguas Residuales del Municipio de Santiago de Tolú sobre los Componentes Bióticos, Abióticos Y Sociales en su Areas de Influencia. 1998

Estrategias para la Implementación de las Tasas Retributivas por Vertimientos Puntuales. Subdirección de Gestión Ambiental. 1999

Documento, Implementación de las Tasas Retributivas por Vertimientos Puntuales 2000

CORRALES, Marco Aurelio. Manual para elaborar propuestas, anteproyectos y proyectos de investigación. ED. LitoArte. Montería. 1998.

CUELLO Maduro ,Luis Ramón; JIMÉNEZ V; Sielva Maria. Efectos Del Vertimiento De Las Nuevas Lagunas De Estabilización Del Sistema De Alcantarillado De Valledupar En El Río Cesar. Tesis de Postgrado Ciencias Ambientales, Universidad de Sucre. 1999.

GORDON MASKEW. Purificación de Aguas, Tratamiento y remoción de aguas Residuales. Volumen I. ED, Limusa . México. 1981

HENAO, Jesús. Introducción al manejo de cuencas hidrográficas. Bogotá. 1998. 253 p.

IGAC . Formaciones Vegetales de Colombia. 1983 Estudio General de Suelos DPTO de sucre. 1983 Estadística Catastral. 1995

METCALF \& EDDY. Ingeniería de aguas residuales. Volumen1. Tratamiento vertido y reutilización. España. ED. Mc GrawHill / interamericana de España. S.A. 1996.

MINISTERIO DEL MEDIO AMBIENTE. Manual de Implementación de Tasa Retributiva por Vertimientos Puntuales. Decreto 901. 1997.

Memoria del Foro Sobre Contaminación del Río Magdalena.

 UNINORTE. 1996
PLAN DE MANEJO INTEGRAL DEL ARROYO GRANDE . Universidad de Sucre.

ROMERO ROJAS, Jairo Alberto. Tratamiento de Aguas Residuales; Teoría y Principios de Diseño. Escuela Colombiana de Ingeniería, Centro Editorial, Bogotá , Colombia . 1999

URPA - SUCRE - Boletín Estadístico 1997

Censo de Minifundio Secretaria de Agricultura - URPA . 1995

Direcciones Internet

htpp:www. abt -ing.com/
htpp:www. corantioquia.gov.co
(Ingeniería y Consultaría Ambiental S.A.)
(Corporación Ambiental del oriente Antioqueño)
htpp:www. cepis.org.pe/ index. html
htpp:www. medellín.gov.co/palnestr/programa . html
htpp:www. minambiente. Gov.co/minamb/normasa. (Normatividad Colombiana) minambiente. Gov.co/cgi-bin/minamb/temas.pl
http:www. mejorprevenir.com/medio-ambiente/contaminación.html
http:www. metropol.gov.co (Autoridad ambiental Área Metropolitana del Valle de Aburra)
http:www. unesco.org.uy/phi/libros/uso_eficiente/indice
http:www. ip/sils.umich.edu/ (Biblioteca Publica Internet)
http:www. rds.org.co/web00/dialogos-ambientales/hojas/costo-rio/index.htm rds.org,co (Red de Desarrollo sostenible Colombia)

ANEXOS

ANEXO A
Registro de Datos Recolectados en Campo Municipios deLos Palmitos, Sincé, Betulia, y Galeras

ANEXO B

Resultados de los Análisis Realizados en el Laboratorio de Aguas Universidad del Norte

Resultados Análisis de laboratorio

- PROAMBIENTE-

ANEXO C

Materiales y Equipos Utilizados Durante El Monitoreo Ambiental Realizado a los Sistemas de Tratamiento de Aguas Residuales

ANEXO D

Cronograma de Actividades Proyecto de Grado

ANEXO E

Registro Fotográfico

[^0]: ${ }^{\Upsilon}$ información suministrada por la Empresa de Servicios públicos de Los Palmitos

[^1]: ${ }^{1}$ Este dato se obtiene a partir de la lectura registrada por el GPS, enlace 4 satélite

[^2]: ${ }^{2}$ Departamento de Sanidad de New York D.S.N.Y. 1974.
 ${ }^{3}$ Hidráulica de canales

[^3]: ${ }^{4}$ Ing. Sanitaria y Ambiental. Examen de las Aguas y Aguas Residuales. 1988.

[^4]: ${ }^{5}$ Este equipo de medición se usa para medir - in situ -, características del agua residual tales como: conductividad, salinidad, total sólidos disueltos.
 ${ }^{6}$ Normas sobre Vertimientos Líquidos a Cuerpos de Agua. Decreto 1584/94 Minsalud

[^5]: ${ }^{7} \mathrm{U}$ pt Co, define el patrón estándar, basado en 1 mg por L de platino en cloro platinado de potasio.

[^6]: ${ }^{8}$ ROMERO ROJAS, 1999
 ${ }^{9}$ Documento Lineamientos de Política para el Manejo Integral del Agua. M.M.A.

[^7]: ${ }^{10}$ M.O.P.T. Manual de Operaciones, Ministerio de Obras Públicas de España. 1991.

[^8]: ${ }^{11}$ Según ROMERO ROJAS, Jairo Alberto. Tratamiento de Aguas Residuales 1999.

[^9]: ${ }^{12}$ La metodología ha sido aplicada con base en un estudio cuidadoso del Standard Methods ... y la experiencia de los asesores químicos adscritos al IDEAM. 1997.
 ${ }^{13}$ Documento Aguas Limpias para Colombia. Tasas Retribuidas por Contaminación Hídrica. 1997.

[^10]: ${ }^{14}$ Ver figura $\mathrm{N}^{\circ} 7$
 ${ }^{15}$ Tratamiento de Aguas Residuales . Escuela Colombiana de Ingeniería. 1999.

[^11]: ${ }^{16}$ Según Decreto 1600 IDEAM, Op Cid.

[^12]: ${ }^{17}$ Decreto 1594/84 Ministerio de Salud. Normas para la Conservación de la Flora y la Fauna.

[^13]: ${ }^{18}$ Artículo 3. Decreto 901/97 MMA

[^14]: ${ }^{19}$ Citado por (IGAC 1990)

[^15]: ${ }^{20}$ RIOS, José Oscar. Recuperación Micro cuenca Arroyo Grande de Corozal. 1995.
 ${ }^{21}$ Según Estudio. Manejo Integral de la Cuenca Arroyo Grande de Corozal .1997.

[^16]: ${ }^{22}$ Según Estudio Manejo Integral Cuenca Arroyo Grande de Corozal.

[^17]: ${ }^{23}$ Plan de Ordenamiento Territorial. Municipio Los Palmitos, 2000.

[^18]: ${ }^{24}$ Plan de Ordenamiento Territorial. Municipio de Sincé. 2000.
 ${ }^{25}$ Monografía de Sincé. Universidad de Sucre. 1999

[^19]: ${ }^{26}$ URPA, Betulia. 1995.

[^20]: ${ }^{27}$ (entidades ambientales del Estado, sector privado, entidades territoriales, institutos de investigación, ONGs, la comunidad, etc)
 ${ }^{28}$ Empresas Municipales de Servicios Públicos

